Share This Article:

Fluorine in Water and Dental Fluorosis in a Community of Queretaro State Mexico

Abstract Full-Text HTML Download Download as PDF (Size:609KB) PP. 744-749
DOI: 10.4236/jep.2011.26086    4,905 Downloads   9,094 Views   Citations

ABSTRACT

The community La Llave, Queretaro State, Mexico, has not been identified by the sanitary authorities as living in a hazard area related to dental fluorosis. However; a high concentration of fluoride is found in their drinking water causing them dental fluorosis. Physical-chemical analysis was carried out in the groundwater sources to determine the prevalence of dental fluorosis risk and caries accordingly to criteria of The World Health Organization, and 154 school children of ages 10 to 13 years were examined. As a result, 1.9 mg/L of fluorine concentration in drinking water was obtained; dental fluorosis presence was detected in the school children with an incidence of about 98%, in 47% of cases severe fluorosis with a dental caries index of 3.06 was traced. The groundwater sources in La Llave community contains fluorine above the limits dictated by Mexican regulations, producing serious repercussions on the health of school children, with an unnaturally high incidence of dental fluorosis.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Juárez-López, R. Huízar-Álvarez, N. Molina-Frechero, F. Murrieta-Pruneda and Y. Cortés-Aguilera, "Fluorine in Water and Dental Fluorosis in a Community of Queretaro State Mexico," Journal of Environmental Protection, Vol. 2 No. 6, 2011, pp. 744-749. doi: 10.4236/jep.2011.26086.

References

[1] Comisión Estatal de Agua, “Estudio Integral del Recurso Agua en los Acuíferos del Estado de Querétaro,” 2000.
[2] A. H. Brownslow, “Geochemistry,” Prentice Hall, Upper Saddle River, 1996.
[3] V. K. Saxena and S. Ahmed, “Dissolution of Fluoride in Groundwater: A Water-Rock Interaction Study,” Environmental Geology, Vol. 40, No. 99, 2001, 1084-1087.
[4] J. U. Lee, H. T. Chon and Y. W. John, “Geochemical Characteristics of Deep Granitic Groundwater in Korea.” Journal of the Korean Society of Groundwater Environment, Vol. 4, 1997, pp. 199-211.
[5] K. Kim and S. T. Yun, “Buffering of Sodium Concentration by Cation Exchange in the Groundwater System of a Sandy Aquifer,” Geochemical Journal, Vol. 39, No. 3, 2005, pp. 273-284. doi:10.2343/geochemj.39.273
[6] G. T. Chae, S. T. Yun, M. J. Kwon, Y. S Kim and B. Mayer, “Batch Dissolution of Granite and Biotite in Water: Implication for Fluorine Geochemistry in Groundwater,” Geochemical Journal, Vol. 40, No. 1, 2006, pp. 95-102. doi:10.2343/geochemj.40.95
[7] G. T. Chae, S. T. Yun, B. Mayer, K. H. Kim, S.Y. Kim, J. S. Kwon, K. Kim and Y. K. Kohn, “Fluorine Geochemistry in Bedrock Groundwater of South Korea,” Science of the Total Environment, Vol. 385, No. 1-3, 2007, pp. 272- 283. doi:10.1016/j.scitotenv.2007.06.038
[8] T. S. Rafique, T. H. Naseem, E. Usmani, F. Bashir, A. Khan and M. I. Bhanger, “Geochemical Factors Controlling the Occurrence of High Fluoride Groundwater in the Nagar Parkar Area, Sindh, Pakistan,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 424-430. doi:10.1016/j.jhazmat.2009.06.018
[9] W. M. Edmunds and P. L. Smedley, “Fluoride in Natural Waters,” In: O. Selinus, Ed., Essential of Medical Geology, Impacts of the Natural Environment on Public Healt, Elsevier Academic Press, Amsterdam, 2005, pp. 301-329.
[10] D. W. Hyndman, “Petrology of Igneous Rocks,” 2nd Edition, McGraw-Hill, Inc., New York, 1985.
[11] L. A. Raymond, “Petrology, the Study of Igneous Sedimentary & Metamorphic Rocks,” 2nd Edition, Mc Graw Hill, New York, 2002.
[12] C. Robinson, S. Connell, J. Kirkham, S. J. Brookes, R. C. Shore and A. M. Smith, “The Effect of Fluoride on the Developing Tooth,” Caries Research, Vol. 38, No. 3, 2004, pp. 268-76. doi:10.1159/000077766
[13] M. Grimaldo. M, Borja-Aburto, V. H, Ramírez, A. L. Ponce and F. Díaz-Barriga, “Endemic Fluorosis in San LuíS Potosí. MéXico; Identification of Risk Factors Associated with Human Exposure to Fluoride,” Environmental Research, Vol. 68, No. 1, 1995, pp. 25-30. doi:10.1006/enrs.1995.1004
[14] J. P. Loyola-Rodríguez, A. Pozos-Guillén, A. Rueda- González, S. Vázquez-Moctezuma and G. De la Paz- Domínguez, “Factores de Riesgo a Fluorosis Dental en San Luis Potosí, México,” Asociación Dental Mexicana, Vol. 6, 1996, pp. 295-300.
[15] World Health Organization, “Oral Health Survey-Basic Methods,” 3rd Edition, WHO, Geneva, 1997.
[16] B. Gizaw, “The Origin of High Bicarbonate and Fluoride Concentration in Waters of the Main Ethiopian Rift Valley, East African Rift System,” Journal of African Earth Sciences, Vol. 22, No. 4, 1996, pp. 391-402. doi:10.1016/0899-5362(96)00029-2
[17] J. Dowgiallo, “Thermal Water Prospecting Results at Jelenia GóRa-Cieplice (Sudetes, Poland) versus Geothermometric Forecasts,” Environmental Geology, Vol. 39, No. 5, 2000, pp. 433-6.
[18] A. Cardona and J. J. Carrillo-Rivera, “Control Equilibrio- Solubilidad en la Concentración de Fluoruro en el Agua Subterránea del Centro de México,” Actas INAGEQ, Vol. 1, 1995, pp. 51-56.
[19] L. F. S. Díaz, “Hidrogeología del Sistema Tesistan- Toluquilla, Jalisco,” Ph.D. Dissertation, Ciencias de la Tierra, Universidad Nacional Autónoma de México, 2007.
[20] Secretaría de Salud: Norma Oficial Mexicana NOM-127- SSA1-1994, “Salud Ambiental, Agua Para Uso y Consumo Humano. Límites Permisibles de Calidad y Tratamientos a que Debe Someterse el Agua Para su Potabilización México,” Diario Oficial/18-Enero-1996, 1996.
[21] J. J. Carrillo-Rivera and B. A. Cardona, “Groundwater Flow System Response in Thick Aquifer Units: Theory and Practice in Mexico,” 53-IAH International Congress, Zacatecas, AIH, Editorial Balkema, Taylor & Francis Group, Leiden, Vol. 12, 2008, pp. 25-46.
[22] P. Medellin, T. Alfaro, S. A. De Lira, A. B. Nieto and M. I. Sarabia, “Fluoride in Drinking Water, Its Correlation with Parameters of the Aquifer and Effect on Dental Health in the City of San Luis Potosi Mexico,” Proceedings Water Quality Technology Conference, American Water Works Association, Vol. 2, 1993, pp. 1011-1024.
[23] H. L. González, L. F. Sánchez and A. I. Mata, “Estudio Hidro-Geoquímico e Isotópico de la Zona de Toluquilla- Tesistan, Jal. Mexico,” CNA-IMTA, 1994.
[24] V. R. Trejo, H. M. T. Alarcón, L. Y. Martínez, N. P. Romero and M. J. Salvador, “Niveles de Fluoruros en el Agua de los Pozos de la Ciudad de Durango,” Ingenieria Hidraulica en Mexico, Vol. 12, No. 3, 1997, pp. 51-57.
[25] J. T?th, “Groundwater as a Geologic Agent,” Journal of Hydrology, Vol. 7, No. 1, 1999, pp. 1-14
[26] J. Lalumandier and R. G. Rozier, “Parent’s Satisfaction with Children’s Tooth Color Fluorosis as a Contributing Factor,” Journal of the American Dental Association, Vol. 129, No. 7, 1998, pp.1000-1006.
[27] S. Sánchez-García, A. Pontigo-Loyola, E. Heredia-Ponce and J. Ugalde-Arellano, “Fluorosi Dental en Adolescentes de Tres Comunidades del Estado de Querétaro,” Revista Mexicana de Pediatría, Vol. 72, No. 1, 2004, pp.5-9.
[28] L. Mabelya, K. G. Koning and Van P. W. H. Helderman, “Dental Fluorosis, Altitude, and Associated Dietary Fac- tors,” Caries Research, Vol. 26, No. 1, 1992, pp. 65-67. doi:10.1159/000261430
[29] M. R. Kramer, C. Springer, N. Berkman and M. Glazer, “Rehabilitation of Hypoxemic Patients with Coped at Low Altitude at the Dead Sea, the Lowest Place on Earth,” Chest, Vol. 99, No. 113, 1998, pp. 571-575. doi:10.1378/chest.113.3.571
[30] J. P. Loyola Loyola-Rodríguez, A. J. Pozos-Guillen and J. C. Hernández-Guerrero, “Bebidas Embotelladas Como Fuentes Adicionales de Exposición a Flúor,” Salud Pública Méx, Vol. 40, No. 5, 1998, pp. 438-41.
[31] F. Díaz-Barriga, R. Leyva, J. Quistian, J. P. Loyola- Rodríguez, A. Pozos and M. A. Grimaldo, “Endemic fluorosis in San Luis Potosi, Mexico IV. Sources of fluo- ride exposure,” Fluoride, Vol. 30, 1997, pp. 219-222.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.