Binding mechanism of halide ions to bovine serum albumin and hemoglobin: investigated by ion selective-electrode

Abstract

The binding mechanism of the interactions of halide ions (F–, Br– and I–) with bovine serum albumin (BSA) and hemoglobin (Hb) were studied at different temperatures, by using ion-selective electrodes. The experimental data were treated according to Klotz equation, and the number of binding sites and the binding constants were determined. The results show that the binding sites of F– on protein molecules are more than those of Br– and I–. Additionally, the number of the binding sites for halide ions on protein molecules increases with increasing temperature. This study also indicates that the binding constants for the interactions of halide ions with proteins gradually decrease as the size of halide ions and temperature increases. These behaviors were reasonably interpreted with the structural and thermodynamic factors. The thermodynamic functions at different temperatures were calculated with thermodynamic equations, and the enthalpy change for the interactions were also determined by isothermal titration calorimetry (ITC) at 298.15 K, which indicate that the interactions of halide ions with proteins are mainly electrostatic interaction.

Share and Cite:

Wang, G. , Tang, W. , Hao, X. , Yan, C. and Lu, Y. (2011) Binding mechanism of halide ions to bovine serum albumin and hemoglobin: investigated by ion selective-electrode. Journal of Biophysical Chemistry, 2, 194-201. doi: 10.4236/jbpc.2011.23023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pacheco, M.T.B., Carraro, F. and Sgarbieri, V.C. (1999) Study of calcium binding to different preparations of yeast protein by using an ion selective electrode. Food Chemistry, 66, 249-252. doi:10.1016/S0308-8146(98)00252-0
[2] Carr, C.W. (1953) Studies on the binding of small anions in protein solutions with the use of membrane electrodes. IV. The binding of calcium ions in solutions of various proteins. Archieves of Biochemistry and Biophysics, 46, 424-431. doi:10.1016/0003-9861(53)90213-6
[3] Rosa, M.C.D., Castagnola, M., Bertonati, C., Galtieri, A. and Glardina, B. (2004) Physiological importance and structural basis of an additional chloride-binding sites in haemoglobin. Biochemical Journal, 380, 889-896. doi:10.1042/BJ20031421
[4] Alberty, R.A. and Marvin, H.H. (1951) The combination of bovine serum albumin with chloride ion. Journal of the American Chemical Society, 73, 3220-3223. doi:10.1021/ja01151a065
[5] Scatchard, G., Coleman, J.S. and Shan, A.L. (1957) Physical chemistry of protein solutions. VII. The binding of some small anions to bovine serum albumin. Journal of the American Chemical Society, 79, 12-20. doi:10.1021/ja01558a003
[6] Scatchard, G., Wu, Y.V. and Shen, A.L. (1959) Physical chemistry of protein solutions. VI. The binding of small anions by serum albumin. Journal of the American Chemical Society, 81, 6104-6109. doi:10.1021/ja01532a003
[7] Bojesen, E. and Bojesen, I.N. (1996) Albumin binding of long-chain fatty acids: thermodynamics and kinetics. Journal of physical chemistry, 100, 17981-17985. doi:10.1021/jp962141m
[8] Klotz, I.M., Walker, F. M. and Pivan, R. B. (1946) The binding of organic ion by proteins. Journal of the American Chemical Society, 68, 1486-1490. doi:10.1021/ja01212a030
[9] Shrivasta, Y.H., Kanthimathi, M. and Nair, B.U. (1999) Interacton of shiff base with bovine serum albumin: Site-specific photocleavege. Biochemistry and Biophysical Research Communications, 265, 311-314. doi:10.1006/bbrc.1999.1675
[10] Hirayama, K., Akashi, S., Furuya, M. and Fukuhara, K.I. (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and FRIT-FAB LC/MS. Biochemistry and Biophysical Research Communications, 173, 639-646. doi:10.1016/S0006-291X(05)80083-X
[11] Taves, D.R. (1968) Evidence that there are two forms of fluoride in human serum. Nature, 217, 1050-1051. doi:10.1038/2171050b0
[12] Mangonidi, S., Stefano, C., Gombos, F. and Brunese, M. (1968) Termodinamica del legame alogeno-proteina. Archives of Stomach, 9, 237-244.
[13] Mangonidi, S., Stefano, C. and Ruggiero, M. (1969) Interaction of fluoride with serum albumin. Fluoride, 2, 91-96.
[14] Peters, T. (1985) Structure of serum albumin. Advances in Protein Chemistry, 37, 161-245.
[15] Carter, D.C. and Ho, J. X. (1994) Structure of serum albumin. Advances in Protein Chemistry, 45, 153-203. doi:10.1016/S0065-3233(08)60640-3
[16] Luehrs, D.C. and Johnson, W.C. (1986) Binding of fluoride ion to egg albumin studied with the fluoride ion selective electrode. Fluoride. 19, 86-89.
[17] Sideris, E.E., Valsami, G.N., Koupparis, M.A. and Macheras, P.E. (1999) Studies on the interaction of diflunisal ion with cyclodextrins using ion-selective electrode potentiometry. European Journal of Pharmaceutical Sciences, 7, 271-278. doi:10.1016/S0928-0987(98)00035-9
[18] Ayranci, E. (1995) Binding of iodide to bovine serum albumin and protamine studied with an ion-selective electrode. Food Chemistry, 54, 173-175. doi:10.1016/0308-8146(95)00023-C
[19] Ayranci, E. and Duman, O. (2004) Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chemistry, 84, 539-543. doi:10.1016/S0308-8146(03)00276-0
[20] Zhang, Y.J. and Cremer, P.S. (2006) Interactions between macromolecules and ions: The Hofmeister series. Current Opinion in Chemical Biology, 10, 658-663. doi:10.1016/j.cbpa.2006.09.020
[21] Ikedo, S., Shimoyamada, M. and Watanabe, K. (1996) Interaction between Bovine Serum Albumin and saponin as studied by heat stability and protease digestion. Journal of Agriculture and Food Chemistry, 44, 792-795. doi:10.1021/jf940742+
[22] Yan, C.N., Zhang, H.X., Liu, Y., Mei, P., Li, K.H. and Tong, J.Q. (2005) Fluorescence spectra of the binding reaction between paraquat and bovine serum albumin. Acta Chimica Sinica, 63, 1727-1732.
[23] Lu, Y. (2004) Enthalpic interaction for α–amino acid with alhai metal halides in water. Chinese Journal of Chemistry, 22, 822-826. doi:10.1002/cjoc.20040220811
[24] Liang, Y., Du F., Zhou, B.R., Zhou, H., Zou, G.L., Wang, C.X. and Qu, S.S. (2002) Thermodynamics and kinetics of the cleavage of DNA catalyzed by bleomycin A5: A microcalorimetric study. European Journal of Biochemistry, 269, 2851-2859. doi:10.1046/j.1432-1033.2002.02948.x
[25] Liang, Y., Du, F., Sanglier, S., Zhou, B.R., Xia, Y., Van Dorsselaer, A., Maechling, C., Kilhoffer, M.C. and Haiech, J. (2003) Unfolding of rabbit muscle creatine kinase induced by acid: A study using electrospray ionization mass spectrometry, isothermal titration calorimetry and fluorescence spectroscopy. Journal Biological Chemistry, 278, 30098-30105. doi:10.1074/jbc.M304050200
[26] Wettig, S.D., Wood, D.O. and Lee, J.S. (2003) Thermodynamic investigation of M-DNA: A novel metal ion-DNA complex. Journal of Inorganic Biochemistry, 94, 94-99. doi:10.1016/S0162-0134(02)00624-4
[27] Mikulecky, P.J. and Feig, A.L. (2004) Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation. Nucleic Acids Research, 32, 3967-3976. doi:10.1093/nar/gkh723
[28] Ross, P.D. and Subramanian, S. (1981) Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20, 3096-3102. doi:10.1021/bi00514a017
[29] Khan, S.N., Islam, B., Yennamalli, R., Sultan, A., Subbarao, N. and Khan, A.U. (2008) Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. European Journal of Pharmaceutical Sciences, 35, 371-382. doi:10.1016/j.ejps.2008.07.010
[30] Lu, Y., Wang, G.K., Lu, X.M., Yan, C.L., Xu, M.H. and Zhang, W.W. (2010) Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling. Spectrochimica Acta A, 75, 261-266. doi:10.1016/j.saa.2009.10.021

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.