Share This Article:

Schottky Barriers on Layered Anisotropic Semiconductor – WSe2 – with 1000 Å Indium Metal Thickness

Abstract Full-Text HTML Download Download as PDF (Size:576KB) PP. 1000-1006
DOI: 10.4236/msa.2011.28135    4,106 Downloads   7,431 Views   Citations


We have studied the forward I-V characteristics of In-pWSe2Schottky barrier diode with 1000 Å indium thickness in the temperature range 140 – 300 K well within the domain of thermionic emission theory with Gaussian distribution of barrier height. However we found some anomalies in the low temperature range below 200 K. Hence we have considered a model that incorporates thermionic emission, generation recombination and tunneling components. The low temperature anomalies observed in the diode parameters were effectively construed in terms of the contribution of these multiple charge transport mechanisms across the interface of the fabricated diodes. Various Schottky diode parameters were also extracted and compared with that of 500 Å metal thickness In-pWSe2 diode.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Mathai, C. Sumesh and B. Modi, "Schottky Barriers on Layered Anisotropic Semiconductor – WSe2 – with 1000 Å Indium Metal Thickness," Materials Sciences and Applications, Vol. 2 No. 8, 2011, pp. 1000-1006. doi: 10.4236/msa.2011.28135.


[1] S. K. Srivastava and B. N. Avasti, “Layer Type Tungsten Dichalcogenide Compounds: their Preparation, Structure, Properties and Uses,” Journal of Materials Science, Vol. 20, No. 11, 1985, pp. 3801-3815. Doi.10.1007/BF00552369
[2] K. Sunil and M. A. Ittyachen, “The Growth and Thermodynamical Feasibility of Tungsten Diselenide Single Crystals Using Chemical Vapour Transport Technique,” Bulletin of Materials Science, Vol. 20, No. 2, April 1997, pp. 231-238. Doi.10.1007/BF02744893
[3] H. Ogawa, A. Iwamae, T. Sugie, S. Kasai, Y. Kawano, S. Kajita and Y. Kusama, “Research and Development of Optical Diagnostics for ITER,” Proceedings of 22nd Fusion Energy Conference (FEC 2008)”, Geneva, 13-18 October 2008.
[4] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis and E. Bucher, “High-mobility Field-effect Transistors Based on Transition Metal Dichalcogenides,” Applied Physics Letters, Vol. 84, No. 17, April 2004, pp. 3301-3303. Doi.10.1063/1.1723695
[5] A. Klein, Y. Tomm, R. Schlaf, C. Pettenkofer, W. Jaegerman, M. Lux-Steiner and E. Bucher, “Photovoltaic Properties of WSe2 Single Crystals Studied by Photoelectron Spectroscopy,” Solar Energy Material and Solar Cell, Vol. 51, No. 2, 24 February 1998, pp. 181-191. Doi.10.1016/S0927-0248(97)00234-1H
[6] G. A. Scholz and H. Gerisher, “Voltage Distribution at the N-WSe2 and N-MoSe2 Electrolyte Interface,” Journal of the Electrochemical Society, Vol. 139, 1992, pp. 165- 170. Doi.10.1149/1.2069164
[7] S. Akari, M. Ch. Lux-Steiner, K. Glockler, T. Schill, R. Heitkamp, B. Koslowski and K. Dransfeld, "Photovoltaic Characterization of WSe2 with the Scanning Tunneling Microscope,” Annalen der Physik., Vol. 505, No. 2, 1993, pp. 141-148. Doi.10.1002/andp.19935050206
[8] A. Pauschit, E. Badisch, M. Roy and D. V. Shtansky, “On the Scratch Behaviour of Self-lubricating WSe2 Films,” Wear, Vol. 267, No. 11, 29 October 2009, pp. 1909-1914. Doi.10.1016/j.wear.2009.03.037
[9] M. Kamaratos, C. A. Papageorgopoulos, D. C. Papageorgopoulos, W. Jaegermann, C. Pettenkofer and J. Lehmann, “Adsorption of Br2 on Na-intercalated NWSe2: Br-induced Deintercalation,” Surface Science, Vol. 377- 379, 20 April 1997, pp. 659-663. Doi.10.1016/S0039-6028(96)01474-4
[10] M. Kamaratos, V. Saltas, C. A. Papageorgopoulos, W. Jaegermann, C. Pettenkofer and D. Tonti, “Interaction of Na and Cl2 on WSe2(0001) Surfaces: Chlorine-induced Na Deintercalation,” Surface Science, Vol. 402-404, 1998, pp. 37-41. Doi.10.1016/S0039-6028(97)00906-0
[11] D. V. Shtansky, T. A. Lobova, V. Yu Fominisky, S. A. Kulinich, I. V. Lyasotsky, M. I. Petrzluk, E. A. Levashow and J. J. Moore, “Structure and Tribological Properties of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN Coatings,” Surface and Coatings Technology, Vol. 183, No. 2-3, 24 May 2004, pp. 328-336. Doi.10.1016/j.surfcoat.2003.09.047
[12] C. A. Papageorgopoulos, M. Kamaratos and A. Papageorgopoulos, “Adsorption of Cs on WSe2 Van Der Waals Surfaces: Temperature and Sputter Effects on Growth Properties,” Surface Science, Vol. 275, No. 3, 15 September 1992, pp. 314-322. Doi.10.1016/0039-6028(92)90803-E
[13] R. Schlaf, A. Klein, C. Pettenkofer and W. Jaegermann, “Laterally Inhomogeneous Surface-potential Distribution and Photovoltage at Clustered In/WSe2(0001) Interfaces,” Physical Review B, Vol. 48, No. 19, 15 November 1993, pp. 14242-14252. Doi.10.1103/PhysRevB.48.14242
[14] A. Klein, C. Pettenkofer, W. Jaegermann, M. Lux-Steiner and E. Bucher, “A Photoemission Study of Barrier and Transport Properties of the Interfaces of Au and Cu with WSe2(0001) Surfaces,” Surface Science, Vol. 321, No. 1-2, 10 December 1994 , pp. 19-31. Doi.10.1016/0039-6028(94)90023-X
[15] S. D. Foulias, D. S. Vlachos, C. A. Papageorgopoulos, R. Yavor, C. Pettenkofer and W. Jaegermann, “A Synchrotron Radiation Study of the Interaction of Na with WSe2 and TaSe2: Oxygen-induced Deintercalation,” Surface Science, Vol. 352-354, 1996, pp. 463-467. Doi.10.1016/0039-6028(95)01180-3
[16] A. Rettenberger, P. Bruker, M. Metzler, F. Mugele, T. W. Matthes, M. Bohmisch, J. Boneberg, K. Friemelt and P. Leiderer, “STM Investigation of the Island Growth of Gold on WS2 and WSe2, ” Surface Science, Vol. 402-404, 15 May 1998, pp. 409-412. Doi.10.1016/S0039-6028(97)00961-8
[17] G. Nicolay, R. Claessen, F. Reinert, V. N. Strocov, S. Hufner, H. Gao, U. Hartmann and E. Bucher, “Fast Epitaxy of Au and Ag on WSe2,” Surface Science, Vol. 432, No. 1-2, 9 July 1999, pp. 95-100. Doi.10.1016/S0039-6028(99)00520-8
[18] A. J. Mathai and K. D. Patel, “Schottky Diode Characteristics: Aluminium with 500 and 1000 ? Thicknesses on P type WSe2 Crystal,” Crystal Research and Technology, Vol. 45, No. 7, 2010, pp. 717-724. Doi.10.1002/crat.201000172
[19] E. H. Rhoderick and R. H. Williams, “Metal- semiconductor Contacts,” 2nd Editor, Clarendon Press, Oxford, 1988.
[20] S. M. Sze, “Physics of Semiconductor Devices,” 2nd Editor, Wiley, New York, 1981.
[21] L. F. Wagner, R. W. Young and A. Sugerman, “A Note on the Correlation between the Schottky Diode Barrier Height and the Ideality Factor as Determined from I-V Measurements,” IEEE Electron Device Letters, Vol. 4, No. 4, April, 1983, pp. 320-322. Doi.10.1109/EDL.1983.25748
[22] R. Sharma, “Temperature Dependence of I-V Characteristics of Au/n-Si Schottky Barrier Diode,” Journal of Electron Devices, Vol. 8, 2010, pp. 286-292.
[23] J. H. Werner and H. H. Guttler, “Barrier Inhomogeneities at Schottky Contacts,” Journal of Applied Physics, Vol. 69, No. 3, 1991, pp. 1522-1533. Doi.10.1063/1.347243
[24] S. Chand and J. Kumar, “Effect of Barrier Height Distribution on the Behaviour of a Schottky Diode,” Journal of Applied Physics, Vol. 82, No. 10, November 1997, pp. 5005-5010. Doi.10.1063/1.366370
[25] Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere and F. Cardon, “On the Difference in Apparent Barrier Height as Obtained from Capacitance-voltage and Current-voltage- temperature Measurements on Al/p-InP Schottky Barriers,” Solid-State Electronics, Vol. 29, No. 6, June 1986, pp. 633-638. Doi.10.1016/0038-1101(86)90145-0
[26] D. Donoval, D. Vladimir and L. Marek, “A Contribution to the Analysis of the I-V Characteristics of Schottky Structures,” Solid-State Electronics, Vol. 42, No. 2, 16 March 1998, pp. 235-241. Doi.10.1016/S0038-1101(97)00237-2
[27] D. Mahalu, A. Jakubowicz, A. Wold and R. Tenne, “Passivation of Recombination Centers on theWSe2 Surface,” Physical Review B, Vol. 38, No. 2, July 15 1988, pp. 1533-1536. Doi.10.1103/PhysRevB.38.1533
[28] P. Salvador, M. Pujadas and G. Campet, “Photoreactions at the N-type-WSe2–electrolyte Interface: Study by Electrolyte Electroreflectance and Photocurrent Transient Measurements,” Physical Review B, Vol. 38, No. 14, 15 November 1988, pp. 9881-9888. Doi.10.1103/PhysRevB.38.9881
[29] A. Jacubowicz, D. Mahalu, M. Wolf, A. Wold and R. Tenne, “WSe2: Optical and Electrical Properties as Related to Surface Passivation of Recombination Centers,” Physical Review B, Vol. 40, No. 5, 15 August 1989, pp. 2992- 3000. Doi.10.1103/PhysRevB.40.2992
[30] M. Biber, O. Gullu, S. Forment, R. L. Van Meirhaeghe and A. Turut, “The Effect of Schottky Metal Thickness on Barrier Height Inhomogeneity in Identically Prepared Au/n-GaAs Schottky Diodes,” Semiconductor Science and Technology, Vol. 21, No. 1, 2006, pp. 1-5. Doi.10.1088/0268-1242/21/1/001

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.