Efflux Pumps Modulation in Colorectal Adenocarcinoma Cell Lines: The Role of Nuclear Medicine

Abstract

Introduction: Multidrug resistance (MDR) is one of the major problems of chemotherapy. Overexpression of efflux pumps, such as P-glycoprotein (Pgp), multiple resistance-related protein 1 (MRP-1) and lung resistance protein (LRP) can lead to MDR. Verapamil and L-buthionine-sulfoximine (BSO) are two modulators of these proteins. This study aims to compare 99mTc-Sestamibi transport kinetics in human colorectal adenocarcinoma cell lines, in the presence and absence of the MDR modulators verapamil and BSO. Material and Methods: MDR proteins expression was evaluated in sensitive (WiDr) and resistant (LS1034) human colorectal adenocarcinoma cell lines. Intracellular and plasma membrane Pgp and MRP1, and LRP expression was analyzed by flow-cytometry and western blot. Cellular transport kinetics was assessed using 99mTc-Sestamibi. MDR modulation was evaluated though retention studies in resistant cells after incubation with the modulators. Results: Pgp expression was significantly higher (p≤0.001) in resistant cells. These results were confirmed by western blot analysis. 99mTc-Sestamibi uptake and retention percentage were significantly higher (p<0.001 and p<0.01, respectively) in the sensitive cells for all time-points considered. In resistant cells there were no significant differences when we consider the curves as a whole, considering cells incubated versus non-incubated with MDR modulators. However, for the first minutes after incubation with 99mTc-Sestamibi, there were differences among the MDR modulators used (p<0.05). Conclusions: In vitro kinetic studies using 99mTc-Sestamibi could indicate MDR phenotype in colorectal adenocarcinoma cells. As the modulators used showed a reversion of the retention profile only for the first minutes, their administration should occur immediately before the administration of cytotoxic drugs.

Share and Cite:

J. Casalta-Lopes, A. Abrantes, M. Laranjo, J. Rio, A. Gonçalves, B. Oliveiros, A. Sarmento-Ribeiro and M. Botelho, "Efflux Pumps Modulation in Colorectal Adenocarcinoma Cell Lines: The Role of Nuclear Medicine," Journal of Cancer Therapy, Vol. 2 No. 3, 2011, pp. 408-417. doi: 10.4236/jct.2011.23056.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. M. Gottesman, T. Fojo and S. E. Bates, “Multidrug Resistance in Cancer: Role of ATP-Dependent Transporters,” Nature Reviews Cancer, Vol. 2, 2002, pp. 48-58. doi:10.1038/nrc706
[2] J. P. Gillet and M. M. Gottesman, “Multi-Drug Resistance in Cancer,” Methods in Molecular Biology, Vol. 596, 2010, pp. 47-76. doi:10.1007/978-1-60761-416-6_4
[3] P. Borst and R. O. Elferink, “Mammalian ABC Transporters in Health and Disease,” Annual Review of Biochemistry, Vol. 71, 2002, pp. 537-592. doi:10.1146/annurev.biochem.71.102301.093055
[4] E. M. Leslie, R. G. Deeley and S. P. Cole, “Multidrug Resistance Proteins: Role of P-Glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in Tissue Defense,” Toxicology and Applied Pharmacology, Vol. 204, No. 3, 2005, pp. 216-237. doi:10.1016/j.taap.2004.10.012
[5] S. V. Ambudkar, C. Kimchi-Sarfaty, Z. E. Sauna and M. M. Gottesman, “P-Glycoprotein: From Genomics to Mechanism,” Oncogene, Vol. 22, 2003, pp. 7468-7485. doi:10.1038/sj.onc.1206948
[6] A. Stavrovskaya, “Cellular Mechanisms of Multidrug Resistance of Tumor Cells,” Biochemistry (Moscow), Vol. 65, No. 1, 2000, pp. 95-106.
[7] J. Ford and W. Hait, “Pharmacology of Drugs that Alter Multidrug Resistance in Cancer,” Pharmacological Reviews, Vol. 42, No. 3, 1990, pp. 155-199.
[8] S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan and R. G. Deeley, “Overexpression of a Transporter Gene in a Multidrug-Resistant Human Lung Cancer Cell Line,” Science, Vol. 258, No. 5088, 1992, pp. 1650-1654. doi:10.1126/science.1360704
[9] G. D. Kruh and M. G. Belinsky, “The MRP Family of Drug Efflux Pumps,” Oncogene, Vol. 22, 2003, pp. 7537-7552. doi:10.1038/sj.onc.1206953
[10] G. Leonard, T. Fojo and S. Bates, “The Role of ABC Transporters in Clinical Practice,” The Oncologist, Vol. 8, No. 5, 2003, pp. 411-424. doi:10.1634/theoncologist.8-5-411
[11] E. Steiner, K. Holzmann, L. Elbling, M. Micksche and W. Berger, “Cellular Functions of Vaults and Their Involvement in Multidrug Resistance,” Current Drug Targets, Vol. 7, No. 8, 2006, pp. 923-934. doi:10.2174/138945006778019345
[12] M. A. Izquierdo, G. L. Scheffer, A. B. Schroeijers, M. C. de Jong and R. J. Scheper, “Vault-Related Resistance to Anticancer Drugs Determined by the Expression of the Major Vault Protein LRP,” Cytotechnology, Vol. 27, No. 1-3, 1998, pp. 137-148. doi:10.1023/A:1008004502861
[13] R. J. Scheper, H. J. Broxterman, G. L. Scheffer, P. Kaaijk, W. S. Dalton, T. H. van Heijningen, C. K. van Kalken, M. L. Slovak, E. G. de Vries and P. van der Valk, “Overexpression of a M(r) 110,000 Vesicular Protein in Non-P-Glycoprotein-Mediated Multidrug Resistance,” Cancer Research, Vol. 53, 1993, pp. 1475-1479.
[14] C. H. Lee, “Reversing Agents for ATP-Binding Cassette Drug Transporters,” Multi-Drug Resistance in Cancer, Vol. 596, 2010, pp. 325-340. doi:10.1007/978-1-60761-416-6_14
[15] H. Minderman, K. L. O. Loughlin, L. Pendyala and M. R. Baer, “VX-710 (Biricodar) Increases Drug Retention and Enhances Chemosensitivity in Resistant Cells Overexpressing P-Glycoprotein, Multidrug Resistance Protein, and Breast Cancer Resistance Protein,” Clinical Cancer Research, Vol. 10, 2004, pp. 1826-1834. doi:10.1158/1078-0432.CCR-0914-3
[16] D. R. Hipfner, R. G. Deeley and S. P. Cole, “Structural, Mechanistic and Clinical Aspects of MRP1,” Biochimica et Biophysica Acta, Vol. 1461, No. 2, 1999, pp. 359-376. doi:10.1016/S0005-2736(99)00168-6
[17] D. Piwnica-Worms, J. F. Kronauge and M. L. Chiu, “Uptake and Retention of Hexakis (2-Methoxyisobutyl Isonitrile) Technetium(I) in Cultured Chick Myocardial Cells. Mitochondrial and Plasma Membrane Potential Dependence,” Circulation, Vol. 82, 1990, pp. 1826-1838. doi:10.1161/01.CIR.82.5.1826
[18] D. Piwnica-Worms, M. L. Chiu, M. Budding, J. F. Kronauge, R. A. Kramer and J. M. Croop, “Functional Imaging of Multidrug-Resistant P-Glycoprotein with an Organotechnetium Complex,” Cancer Research, Vol. 53, No. 5, 1993, pp. 977-984.
[19] A. M. Abrantes, M. E. S. Serra, A. C. Gon?alves, J. Rio, B. Oliveiros, M. Laranjo, A. M. Rocha-Gonsalves, A. B. Sarmento-Ribeiro and M. F. Botelho, “Hypoxia-Induced Redox Alterations and Their Correlation with 99 mTc -MIBI and 99 mTc-HL-91 Uptake in Colon Cancer Cells,” Nuclear Medicine and Biology, Vol. 37, No. 2, 2010, pp. 125-132. doi:10.1016/j.nucmedbio.2009.11.001
[20] T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63. doi:10.1016/0022-1759(83)90303-4
[21] I. Gil-Ad, A. Zolokov, L. Lomnitski, M. Taler, M. Bar, D. Luria, E. Ram and A. Weizman, “Evaluation of the Potential Anti-Cancer Activity of the Antidepressant Sertraline in Human Colon Cancer Cell Lines and in Colorectal Cancer-Xenografted Mice,” International Journal of Oncology, Vol. 33, No. 2, 2008, pp. 277-286.
[22] S. G. Smith, N. L. Lehman and R. G. Moran, “Cytotoxicity of Antifolate Inhibitors of Thymidylate and Purine Synthesis to WiDr Colonic Carcinoma Cells,” Cancer Research, Vol. 53, No. 23, 1993, pp. 5697-5706.
[23] Y. L. Lin and K. C. Chow, “rTSbeta as a Novel 5-Fluorouracil Resistance Marker of Colorectal Cancer: A Preliminary Study,” Annals of the Academy of Medicine, Vol. 39, No. 2, 2010, pp. 107-111.
[24] S. Hector, W. Bolanowska-Higdon, J. Zdanowicz, S. Hitt and L. Pendyala, “In vitro Studies on the Mechanisms of Oxaliplatin Resistance,” Cancer Chemotherapy and Pharmacology, Vol. 48, No. 5, 2001, pp. 398-406. doi:10.1007/s002800100363
[25] F. R. Luo, P. V. Paranjpe, A. Guo, E. Rubin and P. Sinko, “Intestinal Transport of Irinotecan in Caco-2 Cells and MDCK II Cells Overexpressing Efflux Transporters Pgp, cMOAT, and MRP1,” Drug Metabolism and Disposition, Vol. 30, No. 7, 2002, pp. 763-770. doi:10.1124/dmd.30.7.763
[26] A. T. Fojo, K. Ueda, D. J. Slamon, D. G. Poplack, M. M. Gottesman and I. Pastan, “Expression of a Multidrug- Resistance Gene in Human Tumors and Tissues,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 84, No. 1, 1987, pp. 265-269. doi:10.1073/pnas.84.1.265
[27] N. H. Hendrikse, E. J. Franssen, W. T. van Der Graaf, C. Meijer, D. A. Piers, W. Vaalburg and E. G. de Vries, “99mTc-Sestamibi Is a Substrate for P-Glycoprotein and the Multidrug Resistance-Associated Protein,” British Journal of Cancer, Vol. 77, 1998, pp. 353-358. doi:10.1038/bjc.1998.57
[28] C. M. F. Gomes, A. J. Abrunhosa, E. K. J. Pauwels and M. F. Botelho, “P-Glycoprotein versus MRP1 on Transport Kinetics of Cationic Lipophilic Substrates: A Comparative Study Using [99mTc]Sestamibi and [99mTc]Tetrofosmin,” Cancer Biotherapy & Radiopharmaceuticals, Vol. 24, No. 2, 2009, pp. 215-227. doi:10.1089/cbr.2008.0539
[29] N. Perek, F. Koumanov, D. Denoyer, D. Boudard and F. Dubois, “Modulation of the Multidrug Resistance of Glioma by Glutathione Levels Depletion--Interaction with Tc-99M-Sestamibi and Tc-99M-Tetrofosmin,” Cancer Biotherapy & Radiopharmaceuticals, Vol. 17, 2002, pp. 291-302. doi:10.1089/10849780260179251
[30] D. E. Lorke, M. Krüger, R. Buchert, K. H. Bohuslavizki, M. Clausen and U. Schumacher, “In vitro and in vivo Tracer Characteristics of an Established Multidrug-Resistant Human Colon Cancer Cell Line,” Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, Vol. 42, No. 4, 2001, pp. 646-654.
[31] T. Muzzammil, M. J. Moore, D. Hedley and J. R. Ballinger, “Comparison of (99m)Tc-sestamibi and Doxorubicin to Monitor Inhibition of P-Glycoprotein Function,” British Journal of Cancer, Vol. 84, 2001, pp. 367-73. doi:10.1054/bjoc.2000.1621
[32] A. Cayre, N. Moins, F. Finat-Duclos, J. Maublant and P. Verrelle, “Comparative 99mTc-sestamibi and 3H-Daunomycin Uptake in Human Carcinoma Cells: Relation to the MDR Phenotype and Effects of Reversing Agents,” Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, Vol. 40, No. 4, 1999, pp. 672-676.
[33] C. L. Crankshaw, M. Marmion, G. D. Luker, V. Rao, J. Dahlheimer, B. D. Burleigh, E. Webb, K. F. Deutsch and D. Piwnica-Worms, “Novel Technetium (III)-Q Complexes for Functional Imaging of Multidrug Resistance (MDR1) P-Glycoprotein,” Journal of Nuclear Medicine: official publication, Society of Nuclear Medicine, Vol. 39, No. 1, 1998, pp. 77-86.
[34] L. Kabasakal, K. Ozker, M. Hayward, G. Akansel, O. Griffith, A. T. Isitman, R. Hellman and D. Collier, “Technetium-99m Sestamibi Uptake in Human Breast Carcinoma Cell Lines Displaying Glutathione-Associated Drug-Resistance,” European Journal of Nuclear Medicine, Vol. 23, No. 1, 1996, pp. 568-570. doi:10.1007/BF00833393
[35] T. Abe, K. Koike, T. Ohga, T. Kubo, M. Wada, K. Kohno, T. Mori, K. Hidaka and M. Kuwano, “Chemosensitisation of Spontaneous Multidrug Resistance by a 1,4-Dihydropyridine Analogue and Verapamil in Human Glioma Cell Lines Overexpressing MRP or MDR1,” British Journal of Cancer, Vol. 72, 1995, pp. 418-23. doi:10.1038/bjc.1995.348
[36] K. Utsunomiya, J. R. Ballinger, M. Piquette-Miller, A. M. Rauth, W. Tang, Z. F. Su and M. Ichise, “Comparison of the Accumulation and Efflux Kinetics of Technetium-99m Sestamibi and Technetium-99m Tetrofosmin in an MRP-Expressing Tumour Cell Line,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 27, No. 12, 2000, pp. 1786-1792. doi:10.1007/s002590000375

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.