Influence of the Backslopping Practice on the Microbial Diversity of the Lactococcus Population in a Model Cheesemaking

Abstract

The objective of this work was to study the microbial diversity of natural whey starters (NWS), with a special focus on Lactococcus strains, during 10 successive days of backslopping. Each day, whey samples were enumerated for their Lactococcus, Enterococcus, Leuconostoc and Lactobacillus levels. The diversity and dynamics of the Lactococcus population in whey were investigated using phenotypic methods such as acidifying aptitude and enzymatic activities. Molecular approach using REP-PCR, ERIC-PCR, plamid profiles, phages and prophages research and PFGE was also applied. Lactococci were the main population in whey. Strains from raw milk were sub-dominant. Based on PFGE and phenotypic results lactococci in whey displayed a more heterogeneous phenotype and pulsotype which may reflect greater variations than previously observed within starter. No phages and prophages were spotted on. Plasmids did not seem to be exchanged from strain to strain. The backslopping practice seemed to allow the strains of the starter to rapidly acquire a specificity of their own. The changes observed presumed a slow adaptation of the strains to the “back- slopping environment”. The study of NWS diversity constitutes an important step for the comprehension of acidification defects that recurrently occur in cheesemaking technologies using the backslopping practice.

Share and Cite:

Y. Demarigny, M. Dalmasso, A. Tonleu, V. Rigobello, E. Beuvier, M. Ly-Chatain and Y. Bouton, "Influence of the Backslopping Practice on the Microbial Diversity of the Lactococcus Population in a Model Cheesemaking," Food and Nutrition Sciences, Vol. 2 No. 6, 2011, pp. 618-627. doi: 10.4236/fns.2011.26087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Bertoni, L. Calamari and M. Grazia Maianti, “Producing Specific Milks for Speciality Cheeses,” Proceedings of the Nutrition Society, Vol. 60, No. 2, 2001, pp. 231-246. doi:10.1079/PNS200080
[2] M. A. Herreros, J. M. Fresno, M. J. González Prieto and M. E. Tornadijo, “Technological Characterization of Lactic Acid Bacteria Isolated from Armada Cheese (a Spanish Goats’ Milk Cheese),” International Dairy Journal, Vol. 13, No. 6, 2003, pp. 469-479. doi:10.1016/S0958-6946(03)00054-2
[3] G. Mauriello, L. Moio, A. Genovese and D. Ercolini, “Relationships between Flavoring Capabilities, Bacterial Composition, and Geographical Origin of Natural Whey Cultures Used for Traditional Water-Buffalo Mozzarella Cheese Manufacture,” Journal of Dairy Science, Vol. 86, No. 2, 2003, pp. 486-497. doi:10.3168/jds.S0022-0302(03)73627-3
[4] L. Topisirovic, M. Kojic, D. Fira, N. Golic, I. Strahinic and J. Lozo, “Potential of Lactic Acid Bacteria Isolated from Specific Natural Niches in Food Production and Preservation,” International Journal of Food Microbiology, Vol. 112, No. 3, 2006, pp. 230-235. doi:10.1016/j.ijfoodmicro.2006.04.009
[5] G. K. Y. Limsowtin, I. P. Powell and E. Parente, “Types of Starters,” In: T. M. Cogan and J. P. Accolas, Ed., Dairy Starter Cultures, Wiley-VCH, New York, 1996, pp. 101-129.
[6] G. Giraffa, “Studying the Dynamics of Microbial Populations during Food Fermentation,” FEMS Microbiology Reviews, Vol. 28, No. 2, 2004, pp. 251-260.
[7] M. Dalmasso, D. Hennequin, C. Duc and Y. Demarigny, “Influence of Backslopping on the Acidifications Curves of ‘Tomme’ Type Cheeses Made during Ten Successive Days,” Journal of Food Engineering, Vol. 92, No. 1, 2009, pp. 50-55. doi:10.1016/j.jfoodeng.2008.10.019
[8] M. Dalmasso, S. Prestoz, V. Rigobello and Y. Demarigny, “Evolution of Raw Cow Milk Microflora, Especially Lactococci, Enterococci, Leuconostocs and Lactobacilli over a Successive 12 Day Milking Regime,” International Journal of Dairy Science, Vol. 3, No. 3, 2008, pp. 117-130. doi:10.3923/ijds.2008.117.130
[9] D. Isolini, M. Grand and H. Gl?ttli, “Selective Medium for the Detection of Obligatory and Facultative Heterofermentative Lactobacilli,” Schweizerische Milchwirtschaftliche Forschung, Vol. 19, No. 3, 1990, pp. 57-59.
[10] J. V. Mayeux, W. E. Sandine and P. R. Elliker, “A Selective Medium for Detecting Leuconostoc in Mixed-Strain Starter Cultures,” Journal of Dairy Science, Vol. 45, 1962, p. 655.
[11] Y. Demarigny, “R?le de la Flore Naturelle du Lait Cru et de Paramètres Technologiques (Teneur en Sel et Température d’Affinage) sur l’Evolution des Caractéristiques Biochimiques, Microbiologiques et Sensorielles des Fromages à Pate Pressée Cuite,” PhD Thesis, Université de Bourgogne, Dijon, 1997.
[12] Y. Demarigny, C. Sabatier, N. Laurent, S. Prestoz, V. Rigobello and M. J. Blachier, “Microbial Diversity in Natural Whey Starters Used to Make Traditional Rocamadour Goat Cheese and Possible Relationships with Its Bitterness,” Italian Journal of Food Science, Vol. 3, No. 18, 2006, pp. 251-266.
[13] D. Corroler, I. Mangin, N. Desmasures and M. Gueguen, “An Ecological Study of Lactococci Isolated from Raw Milk in the Camembert Cheese Registered Designation of Origin Area,” Applied and Environmental Microbiology, Vol. 64, No. 12, 1998, pp. 4729-4735.
[14] J. Versalovic, T. Koeuth and J. R. Lupski, “Distribution of Repetitive DNA Sequences in Eubacteria and Application of Fingerprinting of Bacterial Genomes,” Nucleic Acids Research, Vol. 19, No. 24, 1991, pp. 6823-6831. doi:10.1093/nar/19.24.6823
[15] A. Depouilly, F. Dufrene, E. Beuvier and F. Berthier, “Genotypic Characterisation of the Dynamics of the Lactic Acid Bacterial Population of Comté Cheese,” Lait, Vol. 84, No. 1-2, 2004, pp. 155-167. doi:10.1051/lait:2003036
[16] Y. Bouton, P. Guyot, E. Beuvier, P. Tailliez, P. and R. Grappin, “Use of PCR-Based Methods and PFGE for Typing and Monitoring Homofermentative Lactobacilli during Comté Cheese Ripening,” International Journal of Food Microbiology, Vol. 76, No. 1-2, 2002, pp. 27-38. doi:10.1016/S0168-1605(02)00006-5
[17] S. Murchan, M. E. Kaufmann, A. Deplano, R. De Ryck, M. Struelens, C. Elsberg Zinn, V. Fussing, S. Salmenlinna, J. Vuopio-Varkila, N. El Solh, C. Cuny, W. Witte, P. T. Tassios, N. Legakis, W. Van Leeuwen, A. Van Belkum, A. Vindel, I. Laconcha, J. Garaizar, S. Haeggman, B. Olsson-Liljequist, U. Ransjo, G. Coombes and B. Cookson, “Harmonization of Pulsed-Field Gel Electrophoresis Protocols for Epidemiological Typing of Strains of Methicillin-Resistant Staphylococcus Aureus: A Single Approach Developed by Conse
[18] D. J. O’Sullivan and T. R. Klaenhammer, “Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from Lactococcus and Lactobacillus spp,” Applied and Environmental Microbiology, Vol. 59, No. 8, 1993, pp. 2730-2733.
[19] S. Moineau, J. Fortier, J. Ackermann and S. Pandian, “Characterization of Lactococcal Bacteriophages from Québec Cheese Plants,” Canadian Journal of Microbiology, Vol. 38, No. 9, 1992, pp. 875-882. doi:10.1139/m92-143
[20] H. Brüssow, “Phages of Dairy Bacteria,” Annual Reviews in Microbiology, Vol. 55, No. 1, 2001, pp. 283-303.
[21] S. Labrie and S. Moineau, “Multiplex PCR for Detection and Identification of Lactococcal Bacteriophages,” Applied and Environmental Microbiology, Vol. 66, No. 3, 2000, pp. 987-994. doi:10.1128/AEM.66.3.987-994.2000
[22] H. Tormo, A. Kodjo and P. Talliez, “Contribution d’un Levain Naturel à la Spécificité des Fromages Fermiers de Chèvre,” Proceedings Conference Produits Alimentaires Fermiers, Clermont-Ferrand, 2004, p. 137.
[23] E. Casalta, J. M. Cachenaut, C. Aubert, F. Dufrene, Y. No?l and E. Beuvier, “Application of Specific Starters for the Manufacture of Venaco Cheese,” Lait, Vol. 85, No. 3, 2005, pp. 205-222. doi:10.1051/lait:2005019
[24] T. M. Cogan, T. P. Beresford, J. Steele, J. Broadbent, N. P. Shah and Z. Ustunol, “Advances in Starter Cultures and Cultured Foods,” Journal of Dairy Science, Vol. 90, No. 9, 2007, pp. 4005-4021. doi:10.3168/jds.2006-765
[25] A. Corsetti, L. Settanni, S. Valmorri, M. Mastrangelo and G. Suzzi, “Identification of Subdominant Sourdough Lactic Acid Bacteria and Their Evolution during Laboratory-Scale Fermentations,” Food Microbiology, Vol. 24, No. 6, 2007, pp. 592-600. doi:10.1016/j.fm.2007.01.002
[26] W. Turpin, C. Humblot, A. Hammoudi and J. P. Guyot, “Limite de l’Utilisation de la REP-PCR Comme Méthode Rapide d’Identification des Bactéries Lactiques,” Proceedings Conférence Club des Bactéries Lactiques, Toulouse, May 2009.
[27] I. Mainville, N. Robert, B. Lee and E. R. Farnworth, “Polyphasic Characterization of the Lactic Acid Bacteria in Kefir,” Systematic and Applied Microbiology, Vol. 29, No. 1, 2006, pp. 59-68. doi:10.1016/j.syapm.2005.07.001
[28] D. Passerini, C. Beltramo, M. Coddeville, Y. Quentin and P. Ritzenthaler, “Genes but Not Genomes Reveal Bacterial Domestication of Lactococcus lactis,” PLoS ONE, Vol. 5, No. 12, 2010, pp. 1-12. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0015306
[29] M. S. Salama, T. Musafija-Jeknic, W. E. Sandine and S. J. Giovannoni, “An Ecological Study of Lactic Acid Bacteria: Isolation of New Strains of Lactococcus Including Lactococcus lactis Subspecies Cremoris,” Journal of Dairy Science, Vol. 78, No. 5, 1995, pp. 1004-1017. doi:10.3168/jds.S0022-0302(95)76716-9
[30] R. C. Massey, P. B. Rainey, B. J. Sheehan, O. M. Keane and C. J. Dorman, “Environmentally Constrained Mutation and Adaptive Evolution in Salmonella,” Current Biology, Vol. 9, No. 24, 1999, pp. 1477-1480. doi:10.1016/S0960-9822(00)80117-7
[31] S. Mills, O. E. McAuliffe, A. Coffey, A. G. F. Fitzgerald and R. P. Ross, “Plasmids of Lactococci—Genetic Accessories or Genetic Necessities?” FEMS Microbiology Review, Vol. 30, No. 2, 2005, pp. 243-273. doi:10.1111/j.1574-6976.2005.00011.x
[32] B. G. Kelly, A. Vespermann and D. J. Bolton, “Gene Transfer Events and Their Occurrence in Selected Environments,” Food and Chemical Toxicology, Vol. 47, No. 5, 2009, pp. 978-983. doi:10.1016/j.fct.2008.06.012
[33] M. Cretenet, V. Laroute, V. Ulvé, S. Jeanson, S. Nouaille, S. Even, M. Piot, L. Girbal, Y. Le Loir, P. Loubière, S. Lortal and M. Cocaign-Bousquet, “Dynamic Analysis of the Lactococcus lactis Transcriptome in Cheeses Made from Milk Concentrated by Ultrafiltration Reveals Multiple Strategies of Adaptation to Stresses,” Applied and Environmental Microbiology, Vol. 77, No. 1, 2011, pp. 247-257. doi:10.1128/AEM.01174-10

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.