Share This Article:

Synthesis of Carbon Nano Tubes on Silicon Substrates Using Alcohol Catalytic Chemical Vapor Deposition

Abstract Full-Text HTML Download Download as PDF (Size:2073KB) PP. 922-935
DOI: 10.4236/msa.2011.27123    5,218 Downloads   9,183 Views   Citations


The technique used for synthesizing large quantity carbon nanotubes (CNTs) directly on the surface of silicon substrates has been developed by means of the alcohol catalyst chemical vapor deposition ACCVD method using ethanol. The proposed method adopts an easy and costless liquid-based dip-coat approach for mounting the catalytic metals on the substrates. Reasonable quality formation of catalyst preparation was found at 5 min of dipping the substrate into cobalt acetate solution and withdrawing at speed of 4 cm/min followed by heat treatment at 400°C. Cobalt acetate catalyst on silicon substrates were analyzed using an atomic force microscopy (AFM) and scanning electron microscopy (SEM). The substrate surface is blackened with a layer of CNTs after the ACCVD at an optimum condition. The grown CNTs were analyzed using transmission electron microscopy TEM, SEM, XRD, UV/Vis-NIR spectroscopy and photoacoustic (PA) measurements of thermal parameters. Large quantities of single and multi walled carbon nanotubes were grown at a growth time of 50 min and growth temperatures of 800 and 900°C. UV-Vis/NIR spectroscopy detected two absorption peaks at 0.78 and 1.35 eV and optical energy gap (Eopt) of 1.16 eV for CNTs grown at 800°C. The PA measurements of thermal parameters detected maximum values of thermal diffusivity, effusivity and conductivity for those grown at 800°C.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Abu-Abdeen and A. Aljaafari, "Synthesis of Carbon Nano Tubes on Silicon Substrates Using Alcohol Catalytic Chemical Vapor Deposition," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 922-935. doi: 10.4236/msa.2011.27123.


[1] F. H. Gojny and K. Schulte, “Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-Wall Carbon Nanotube/Epoxy-Composites,” Composite Science and Technology, Vol. 34, 2004, pp. 2303-2308. doi:10.1016/j.compscitech.2004.01.024
[2] A. Frankland, D. W. Caglar, Brenner and M. Griebe, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube- Polymer Interfaces,” Journal of Physical Chemistry B, Vol. 106, No. 12, 2002, pp. 3046-3048. doi:10.1021/jp015591+
[3] B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. Nolte and K. Schulte, “Fundamental Aspects of Nano-Rein- forced Composites,” Composite Science and Technology, Vol. 66, No. 16, 2006, pp. 3115-3125. doi:10.1016/j.compscitech.2005.01.014
[4] F. H. Gojny, M. H. G. Wichmann, B. Fiedler and K. Schulte, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study,” Composite Science and Technology, Vol. 65, No. 15-16, 2005, pp. 2300-2313. doi:10.1016/j.compscitech.2005.04.021
[5] J. A. Kim, D. G. Seong, T. J. Kang and J. R. Youn, “Effects of Surface Modification on Rheological and Mechanical Properties of CNT/Epoxy Composites,” Carbon, Vol. 44, No. 10, 2006, pp. 1898-1905. doi:10.1016/j.carbon.2006.02.026
[6] A. T. Seyhana, M. Tanoglub and K. Schultec, “Tensile Mechanical Behavior and Fracture Toughness of MWCNT and DWCNT Modified Vinyl-Ester/Polyester Hybrid Nanocomposites Produced by 3-Roll Milling,” Material Science and Engineering A, Vol. 523, 2009, pp. 85-92. doi:10.1016/j.msea.2009.05.035
[7] K. P. De Jong and J. W. Geus, “Carbon Nanofibers: Catalytic Synthesis and Applications,” Catalytic Review Science and Engineering, Vol. 42, No. 4, 2000, pp. 481-510. doi:10.1081/CR-100101954
[8] P. Serp, M. Corrias and P. Kalck, “Carbon Nanotubes and Nanofibers in Catalysis,” Applied Catalysis A, Vol. 253, No. 2, 2003, pp. 337-358. doi:10.1016/S0926-860X(03)00549-0
[9] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[10] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls,” Nature, Vol. 363, 1993, pp. 605-607. doi:10.1038/363605a0
[11] W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G. F. Fuente, Y. Maniette, E. Anglaret and J. L. Sauvajol, “Production of High-Density Single-Walled Nanotube Material by a Simple Laser-Ablation Method,” Chemistry and Physics Letters, Vol. 292, 1998, pp. 587-593. doi:10.1016/S0009-2614(98)00776-3
[12] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton, “Controlled Production of Aligned- Nanotube Bundles,” Nature, Vol. 388, 1997, pp. 52-54. doi:10.1038/40369
[13] Z. F. Ren, Z. P. Huang, J. W. Xu, Wang, P. Bush, M. P. Siegel and P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Journal of Science, Vol. 282, 1998, pp. 1105-1107. doi:10.1126/science.282.5391.1105
[14] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Journal of Science, Vol. 283, 1999, pp. 512-514. doi:10.1126/science.283.5401.512
[15] Y. C. Choi, D. W. Kim, T. J. Lee, C. J. Lee and Y. H. Lee, “Growth Mechanism of Vertically Aligned Carbon Nanotubes on Silicon Substrates,” Journal of synthetic Metals, Vol. 117, 2001, pp. 81-86.
[16] A. Huczko, “Synthesis of Aligned Carbon Nanotubes,” Applied Physics A Material Science Process, Vol. 74, No. 5, 2002, pp. 617-638. doi:10.1007/s003390100929
[17] D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashi and Y. Homma, “Carbon Nanotube Growth from Semiconductor Nanoparticles,” Nano Letter, Vol. 7, No. 8, 2007, pp. 2272-2275. doi:10.1021/nl0708011
[18] Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang and H. J. Dai, “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes,” Journal of Physics and Chemistry B, Vol. 46, No. 105, 2001, pp. 11424-11431. doi:10.1021/jp012085b
[19] S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco and R. B. Weisman, “Narrow nm-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst,” Journal of American Chemical Society, Vol. 125, No. 37, 2003, pp. 11186-11187. doi:10.1021/ja036622c
[20] Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong and H. J. Dai, “Electric-Field-Directed Growth of Aligned Single- Walled Carbon Nanotubes,” Applied Physics Letters, Vol. 79, 2001, pp. 3155-3157. doi:10.1063/1.1415412
[21] S. Huang, B. Maynor, X. Cai and J. Liu, “Ultralong, Well-Aligned Single-Walled Carbon Nanotube Architectures on Surfaces,” Journal of Advanced Materials, Vol. 15, 2003, pp. 1651-1655. doi:10.1002/adma.200305203
[22] W. E. Alvarez, B. Kitinayan, A. Borgna and D. E. Resasco, “Synergism of Co and Mo in the Catalytic Production of Single-Wall Carbon Nanotubes by Decomposition of CO,” Carbon, Vol. 39, No. 4, 2001, pp. 547-558. doi:10.1016/S0008-6223(00)00173-1
[23] B. Kitinayan, W. E. Alvarez, J. H. Harwell and D. E. Resasco, “Controlled Production of Single-Wall Carbon Nanotubes by Catalytic Decomposition of CO on Bimetallic Co–Mo Catalysts,” Journal of Chemistry and Physics Letters, Vol. 317, 2000, pp. 497-503.
[24] B. Zheng, Y. Li and J. Liu, “CVD Synthesis and Purification of Single-Walled Carbon Nanotubes on Aerogel- Supported Catalyst,” Journal of Applied Physics A Material Science Process, Vol. 74, No. 3, 2002, pp. 345-348.
[25] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley, “Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide,” Journal of Chemistry and Physics Letters, Vol. 31, 1999, pp. 91-97. doi:10.1016/S0009-2614(99)01029-5
[26] M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith and R. E. Smalley, “Gas-Phase Production of Carbon Single-Walled Nanotubes from Carbon Monoxide via the HiPco Process: A Parametric Study,” Journal of Vacuum Science and Technology A, Vol. 19, No. 4, 2001, pp. 1800-1805. doi:10.1116/1.1380721
[27] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, “Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol,” Journal of Chemistry and Physics Letters, Vol. 360, 2002, pp. 229- 234. doi:10.1016/S0009-2614(02)00838-2
[28] Y. Murakami, Y. Miyauchi, S. Chiashi and S. Maruyama, “Characterization of Single-Walled Carbon Nanotubes Catalytically Synthesized from Alcohol,” Journal of Che- mistry and Physics Letters, Vol. 374, 2003, pp. 53-58.
[29] Y. Murakami, Y. Miyauchi, S. Chiashi and S. Maruyama, “Direct Synthesis of High-Quality Single-Walled Carbon Nanotubes on Silicon and Quartz Substrates,” Journal of Chemistry and Physics Letters, Vol. 377, 2003, pp. 49-54.
[30] S. Maruyama, Y. Miyauchi, T. Edamura, Y. Igarashi, S. Chiashi and Y. Murakami, “Synthesis of Single-Walled Carbon Nanotubes with Narrow Diameter-Distribution from Fullerene,” Journal of Chemistry and Physics Letters, Vol. 375, 2003, pp. 553-559. doi:10.1016/S0009-2614(03)00907-2
[31] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo and S. Maruyama, “Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy,” Journal of Chemistry and Physics Letters, Vol. 385, 2004, pp. 298-303. doi:10.1016/j.cplett.2003.12.095
[32] S. Maruyama, E. Einarsson, Y. Murakami and T. Edamura, “Growth Process of Vertically Aligned Single- Walled Carbon Nanotubes,” Journal of Chemistry and Physics Letters, Vol. 403, 2005, pp. 320-323. doi:10.1016/j.cplett.2005.01.031
[33] T. Okazaki and H. Shinohara, “Synthesis and Characterization of Single-Wall Carbon Nanotubes by Hot-Filament Assisted Chemical Vapor Deposition,” Journal of Chemistry and Physics Letters, Vol. 376, 2003, pp. 606-611. doi:10.1016/S0009-2614(03)01042-X
[34] S. Chiashi, Y. Murakami, Y. Miyauchi and S. Maruyama, “Cold wall CVD Generation of Single-Walled Carbon Nanotubes and in Situ Raman Scattering Measurements of the Growth,” Journal of Chemistry and Physics Letters, Vol. 386, 2004, pp. 89-94. doi:10.1016/j.cplett.2003.12.126
[35] D. Nishide, H. Kataura, S. Suzuki, O. Okubo and Y. Achiba, “Growth of Single-Wall Carbon Nanotubes from Ethanol Vapor on Cobalt Particles Produced by Pulsed Laser Vaporization,” Journal of Chemistry and Physics Letters, Vol. 392, 2004, pp. 309-313. doi:10.1016/j.cplett.2004.04.119
[36] H. E. Unalan and M. Chhowalla, “Investigation of Single- Walled Carbon Nanotube Growth Parameters Using Alcohol Catalytic Chemical Vapour Deposition,” Nano- technology, Vol. 16, 2005, pp. 2153-2163. doi:10.1088/0957-4484/16/10/031
[37] S. M. Sze, “Physics of Semiconductor Devices,” 2nd Edition, Wiley, New York, 1981.
[38] K. L. Chopra, R. C. Kainthla, D. K. Pandya and A. P. Thakoor, “Physics of Thin Films,” Academic Press, New York. Vol. 12, 1982, p. 169
[39] S. Al-Ani, I. Al-Hassany, Z. Al-Dahan, “The Optical Properties and A. C. Conductivity of Magnesium Phosphate Glasses,” Journal of Material Science, Vol. 30, 1995, pp. 3720-3726. doi:10.1007/BF00351890
[40] Khairurrijal, M. Abdullah, M. Rosi and A. N. Fatimah, “Structural Characteristics of Carbon Nanotubes Fabricated Using Simple Spray Pyrolysis Method,” Indonesian Journal of Physics, Vol. 19, No. 3, 2008, pp. 91-95.
[41] Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao and Y. Chen, “The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of Its Epoxy Composites,” Carbon, Vol. 45, 2007, pp. 1614-1621.
[42] I. Stamatina, A. Morozana, A. Dumitrua, V. Ciupinab, G. Prodanb, J. Niewolskic, H. Figielc, “The Synthesis of Multi-Walled Carbon Nanotubes (MWNTs) by Catalytic Pyrolysis of the Phenol-Formaldehyde Resins,” Physica E, Vol. 37, 2007, pp. 44-48. doi:10.1016/j.physe.2006.10.013
[43] M. S. Jeong and C. C. Byeon, “Purity Measurement of Single Walled Carbon Nanotubes by UV-Vis-NIR Absorption Spectroscopy and Thermogravimetric Analysis,” Nano, Vol. 3, No. 2, 2008, pp. 101-108. doi:10.1142/S1793292008000885
[44] D. Y. Kim, Y. S. Yun, H. Bak, S. Y. Cho and H. J. Jin, “Aspect Ratio Control of Acid Modified Multiwalled Carbon,” Current Applied Physics, Vol. 10, 2010, pp. 1046-1052. doi:10.1016/j.cap.2009.12.038
[45] D. Chen, T. Sasaki, J. Tang and L. C. Qin, “Effects of Deformation on the Electronic Structure of a Single- Walled Carbon Nanotube Bundle,” Physical Review B, Vol. 77, 2008, p. 125412. doi:10.1103/PhysRevB.77.125412
[46] A. S. Ayesh and R. Abed Al-Rahem, “Optical and Electrical Properties of Polycarbonate/MnCl2 Composite Films,” Journal of Plastic Films and Sheeting, Vol. 24, No. 2, 2008, pp. 109-124. doi:10.1177/8756087908094854
[47] T. A. El-Brolossy, S. Abdallah, T. Abdallah, H. Awad, M. B. Mohamed, S. Negm and H. Talaat, “Photoacoustic Spectroscopy Characterization of CdSe Quantum Rods,” European Physics Journal Special Topics, Vol. 153, 2008, pp. 369-372. doi:10.1140/epjst/e2008-00464-x
[48] J. Hone, M. Whitney, C. Piskoti and A. Zettl, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 59, 1999, pp. R2514-R2516. doi:10.1103/PhysRevB.59.R2514
[49] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Applied Physics Letters, Vol. 77, 2000, pp. 666-669. doi:10.1063/1.127079
[50] G. D. Zhan and A. K. Mukherjee, “Processing and Characterization of Nanoceramic Composites with Interesting Structural and Functional Properties,” Review of Advanced Material Science, Vol. 10, 2005, pp. 185-191.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.