Share This Article:

Structural and Ion Transport Studies in (100-x) PVdF + xNH4SCN Gel Electrolyte

Abstract Full-Text HTML Download Download as PDF (Size:1292KB) PP. 721-728
DOI: 10.4236/msa.2011.27100    4,449 Downloads   8,229 Views   Citations


In order to obtain highly conductive polymer gel electrolytes for electrochemical devices, Poly (vinylidene fluoride) (PVdF) based gel electrolytes namely (100–x)PVdF + xNH4SCN electrolyte system has been synthesized by solution cast technique and characterized by XRD, DSC, IR, SEM and electrical measurements. IR study of gel electrolytes shows interaction of PVdF matrix and dopant salt with prominence of α-phase. This result is also well supported by XRD and DSC studies. The electrolytes are electrochemically stable within ± 1.5 V. The optimum bulk electrical conductivity for 90PVdF + 10NH4SCN electrolyte has been found to be ~ 2.5 × 10–2 S●cm–1. Dielectric relaxation behavior shows low frequency dispersion and αc-related relaxation peak is observed in loss spectra. Polarization behavior of gel electrolyte shows ionic nature of charge transport (Tion. > 0.90). The temperature dependent conductivity shows VTF behavior.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Pandey, M. Dwivedi, N. Asthana, M. Singh and S. Agrawal, "Structural and Ion Transport Studies in (100-x) PVdF + xNH4SCN Gel Electrolyte," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 721-728. doi: 10.4236/msa.2011.27100.


[1] J. Y. Song, Y. Y. Wang and C. C. Wan, “Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries,” Journal of Power Sources, Vol. 77, No. 2, 1999, pp. 183-197. doi:10.1016/S0378-7753(98)00193-1
[2] S. S. Sekhon, “Conductivity Behaviour of Polymer Gel Electrolytes: Role of Polymer,” Bulletin of Materials Science, Vol. 26, No. 3, April 2003, pp. 321-328. doi:10.1007/BF02707454
[3] P. Ueberschlag, “PVDF Piezoelectric Polymer,” Sensor Review, Vol. 21, No. 2, April 2001 pp.118-126. doi:10.1108/02602280110388315
[4] M. Gilbert, “Crystallinity in Poly(Vinyl Chloride),” Polymer Reviews, Vol. C34, No. 1, 1994, pp. 77-135. doi:10.1080/15321799408009633
[5] A. Awadhia, S.K. Patel and S. L. Agrawal, “Dielectric Investigations in PVA Based Gel Electrolytes,” Progress in Crystal Growth and Characterization of Materials, Vol. 52, No. 1-2, March-June 2006, pp. 61-68. doi:10.1016/j.pcrysgrow.2006.03.009
[6] S. K. Patel, A. Awadhia and S. L. Agrawal, “Thermal and Electrical Studies on Composite Gel Electrolyte System: PEG-PVA-(NH4CH2CO2)2,” Phase Transition, Vol. 82, No. 6, June 2009, pp. 421-432. doi:10.1080/01411590902722363
[7] V. Neburchilov, J. Martin, H. Wang and J. Zhang, “A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells,” Journal of Power Sources, Vol. 169, No. 2, June 2007, pp. 221-238. doi:10.1016/j.jpowsour.2007.03.044
[8] H. Zhang and J. Wang, “Vibrational Spectroscopic Study of Ionic Association in Poly(Ethylene Oxide)-NH4SCN Polymer Electrolytes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 71, No. 5, January 2009, pp. 1927-1931. doi:10.1016/j.saa.2008.07.018
[9] D. R. Dillon, K. K. Tenneti, C.Y. Li, F. K. Ko, I. Sics and B. S. Hsiao, “On the Structure and Morphology of Polyvinylidene Fluoride-Nanoclay Nanocomposites,” Polymer, Vol. 47, 2006, pp. 1678-1688. doi:10.1016/j.polymer.2006.01.015
[10] S. S. Sekhon and H. P. Singh, “Ionic Conductivity of PVdF-Based Polymer Gel Electrolytes,” Solid State Ionics, Vol. 152-153, 2002, pp. 169-174. doi:10.1016/S0167-2738(02)00296-5
[11] B. K. Cho, P. C. Canfield and D. C. Johnston, “Onset of Superconductivity in the Antiferromagnetically Ordered State of Single-Crystal DyNi2B2C,” Physical Review B, Vol. 52, 1995, pp. R3844-R3847. doi:10.1103/PhysRevB.52.R3844
[12] J.G. Bergman, J. H. Mc Fee and G. R. Crane, “Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride,” Applied Physics Letters, Vol. 18, No. 5, 1971, pp. 203-204. doi:10.1063/1.1653624
[13] J. H. Mc Fee, J. G. Bergman and G. R. Cron, “Pyroelectric and Non Liniear Optical Properties of Poled PVDF Film,” Ferroelectrics, Vol. 3, 1972, pp. 305-313. doi:10.1080/00150197208235322
[14] R. G. Kepler and R. A. Anderson, “Ferroelectricity in Polyvinylidene Fluoride,” Journal of Applied Physics, Vol. 49, No. 3, 1978, pp.1232-1235. doi:10.1063/1.325011
[15] B. A. Newman, C. H. Yoon, K. D. Pae and J. I. Scheinbeim, “Piezoelectric Activity and Field Induced Crystal Structure Transitions in Poled Poly(Vinylidene Fluoride) Films,” Journal of Applied Physics, Vol. 50, No. 10, 1979 pp. 6095-6100. doi:10.1063/1.325778
[16] Y. J. Park, Y. S. Kang and C. Park, “Micropatterning of Semicrystalline Poly(Vinylidene Fluoride) (PVDF) Solutions,” European Polymer Journal, Vol. 41, 2005, pp. 1002-1012. doi:10.1016/j.eurpolymj.2004.11.022
[17] G. Ribeiro, A. Z. Heloisa, N. G. Adriana, P. S. Camila, F. P. Duclerc, L. C. P. Lima and B. L. Ademer, Proceeding of International Nuclear Atlantic Conference – INAC 27 September to 2 October 2009.
[18] S. L. Agrawal and A. Awadhia, “DSC and Conductivity Studies on PVA-Based Proton Conducting Gel Electrolytes,” Bulletin of Materials Science, Vol. 27, 2004, pp. 523-527. doi:10.1007/BF02707280
[19] K. Pandey, M. M. Dwivedi, M. Singh and S. L. Agrawal, “Studies of Dielectric Relaxation and a.c. Conductivity in [(100?x)PEO + xNH4SCN]: Al-Zn Ferrite Nano Composite Polymer Electrolyte,” Journal of Polymer Research, Vol. 17, No. 1, 2010, pp. 127-133. doi:10.1007/s10965-009-9298-3
[20] K. Kimmerle and H. Strathmann, “Analysis of the Structure Determining Process of Phase Inversion Membranes,” Desalination, Vol. 79, 1990, pp. 283-302. doi:10.1016/0011-9164(90)85012-Y
[21] Li Jian, X. Jingu, S. Quing and J. Xiaozhen, “Microporous Polymer Electrolyte Based on PVDF-PEO,” Chinese Science Bulletin, Vol. 50, No. 4, 2005, pp. 368-370. doi:10.1360/982004-482
[22] M. K. Song, Y. T. Kim, B. W. Cho, B. N. Popov and H. W. Rhee, “Thermally Stable Gel Polymer Electrolytes,” Journal of Electrochemical Society, Vol. 150, No. 4, 2003 pp. A439-A444.
[23] G. Mago, M. K. Dilhan and T. F. Frank, “Membranes of Polyvinylidene Fluoride and PVDF Nanocomposites with Carbon Nanotubes via Immersion Precipitation,” Journal of Nanomaterials, Vol. 2008, 2008, 8 Pages.
[24] K. Pandey, M. M. Dwivedi, I. M. L. Das, M. Singh and S. L. Agrawal, “Ion Transport Studies on Al–Zn Ferrite Dispersed Nano-Composite Polymer Electrolyte,” Journal of Electroceramics, Vol. 25, No. 2-4, 2009, pp. 99-107.
[25] S. Ramesh and A. K. Arof, “Ionic Conductivity Studies of Plasticized Poly(Vinyl Chloride) Polymer Electrolytes,” Material Science and Engineering B, Vol. 85, No. 1, 2001, pp. 11-15. doi:10.1016/S0921-5107(01)00555-4
[26] R. Gregoria Jr and M. Cestari, “Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(Vinylidene Fluoride),” Journal of Polymer Science, Vol. 32, No. 5, 1994, pp. 859-870.
[27] A. Ghosh and A. Pan, “Scaling of the Conductivity Spectra in Ionic Glasses: Dependence on the Structure,” Physics Review Letters, Vol. 84, No. 10, 2000, pp. 2188-2190. doi:10.1103/PhysRevLett.84.2188
[28] T. G. Fox and P. J. Flory, “Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight,” Journal of Applied Physics, Vol. 21, 1950, pp. 581-591. doi:10.1063/1.1699711
[29] J. W. Sy and J. Mijovic “Reorientational Dynamics of Poly(Vinylidene Fluoride)/Poly(Methyl Methacrylate) Blends by Broad-Band DRS,” Macromolecules, Vol. 33, No. 3, 2000, pp. 933-946. doi:10.1021/ma9907035

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.