Share This Article:

Mapping Glacier Variations at Regional Scale through Equilibrium Line Altitude Interpolation: GIS andStatistical Application in Massif des Écrins (French Alps)

Abstract Full-Text HTML Download Download as PDF (Size:1494KB) PP. 232-241
DOI: 10.4236/jgis.2011.33020    3,513 Downloads   7,075 Views   Citations


Glacier variation is one of the best indicators of climate change in mountainous environment. In French Alps, many temporal data are acquired by glaciologists at glaciers scale: geometrical parameters (surface area, thickness, length and front altitude) are surveyed since the end of the 19th century. Those parameters are necessary to estimate the mass-balance of glaciers and, then, an accurate temporal signal of glacier variation. However, the time-response of the glaciers can be highly variable because of the topoclimate, and more generally the local settings of the glaciers. Moreover, climatologists and hydrologists are requiring estimation of glacier variations at regional scale and not only at local scale. In this paper, we highlight that the Equilibrium Line Altitude (ELA) is a parameter prone to spatio-temporal reconstructions at regional scale. ELA can indeed be interpolated at a region scale from local data: for instance, many geographers have reconstructed spatial trends during 1980s. Here, we try to interpolate ELA from multi-dimensionnal regression analysis: ELA is explained by many local parameters (Incoming solar radiation, topographic indexes, snow-redistribution by wind, etc.). Regression model was adjusted from a spatio-temporal database of 50 glaciers, located in the Massif des Écrins. ELA was estimated for each glacier thanks to the Accumulation Area Ratio (ratio = 0.65) at two stages: LIA maximum and at present. Results first show that the multiple regression analysis is efficient to interpolate ELA through space: the adjusted r2 is about 0.49 for the reconstruction during the LIA, and 0.47 at present. Moreover, the RMSE error is about 50 meters for the LIA period, 55 meters at present. Finally, a high spatial variability (standard deviation of about 150 meters) is highlighted: incoming solar radiation and snow redistribution by wind mostly explain the observed differences. We can also assess a rise of the ELA of about 250 meters during the 20th century.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

É. Cossart, "Mapping Glacier Variations at Regional Scale through Equilibrium Line Altitude Interpolation: GIS andStatistical Application in Massif des Écrins (French Alps)," Journal of Geographic Information System, Vol. 3 No. 3, 2011, pp. 232-241. doi: 10.4236/jgis.2011.33020.


[1] R. Bonaparte, “Variations Périodiques des Glaciers Fran?ais,”Annuaire du Club Alpin Fran?ais, Vol. 17, 1890, pp. 425-447.
[2] R. Bonaparte, “Variations Périodiques des Glaciers Fran- ?ais,”Annuaire du Club Alpin Fran?ais, Vol. 18, No. , 1891, pp. 482-519.
[3] S.C. Porter, “Present and Past Glaciation Threshold in the Cascade Range, (Washington, USA),” Journal of Glaciology, Vol. 18, No. 78, 1977, pp. 101-115.
[4] A. Rabatel, J. P. Dedieu and L. Reynaud, “Suivi du Bilan de Masse Glaciaire Par Télédétection: Application au Glacier Blanc (Massif des Ecrins, France) Entre 1985 et 2000,” Revue de Géographie Alpine, 2002, pp. 99-109. doi:10.3406/rga.2002.3094
[5] C. Rabot, “Essai de Chronologie des Variations Gla- ciaires,” Extrait du Bulletin de Géographie Historique et Descriptive, Paris, 1902, p. 47.
[6] S.C. Porter, “Equilibrium-Line Altitudes of Late-Quarter- nary Glaciers in the Southern Alps, New Zealand,” Quaternary Research, Vol. 5, No. , 1975, pp. 27-47.
[7] M. Chenet, E. Roussel, V. Jomelli and D. Grancher, “Asynchronous Little Ice Age Glacial Maximum Extent in South-East Iceland,” Geomorphology, Vol. 114, No. 3, 2010, pp. 253-260. doi:10.1016/j.geomorph.2009.07.012
[8] J. L. Edouard, “Les Fluctuations Glaciaires dans le Haut Bassin de la Romanche,”Ph. D Thesis, Université Gre- noble I, 1979, p. 685.
[9] D. Six, L. Reynaud and A. Letréguilly, “Bilans de Masse Des Glaciers Alpins et Scandinaves, Leurs Relations avec L’oscillation du Climat de L’atlantique Nord,” Comptes Rendus Académie Sciences, Sciences de la Terre et des planètes, Vol. 333, 2001, pp. 693-698.
[10] E. Cossart, “Cartographier les Variations Glaciaires,” Le Monde des Cartes—revue du Comité Fran?ais de Carto- graphie, Vol. 203, 2010, pp. 17-31.
[11] I. S. Evans and N. Cox, “The Form of Glacial Cirques In the English Lake Disctrict, Cumbria,” Zeitschrift für Geomorphologie NF, Vol. 43, No. 2, 1995, pp. 203-234.
[12] C. Vincent, “Influence of Climate Change over the 20th Century on Four French Glacier Mass Balances,” Journal of Geophysical Research, Vol. 107, No. D19, 2002, pp. 1-12. doi:10.1029/2001JD000832
[13] D. I. Benn and D. J. Evans, “Glaciers and Glaciations,” Oxford University Press, New York, 1998, p. 734.
[14] J. Ehlers, “Quaternary and Glacial Geology,” John Wiley and Sons, Chichester, 1996, p. 578.
[15] A. Colas, “Recherches Géomorphologiques en Va- llouise,” Ph. D Thesis, Lille 1 University, Lille, 2000, p. 291.
[16] V. Jomelli and B. Francou, “Comparing the Characteristics of Rockfall Talus and Snow Avalanche Landforms in an Alpine Environment Using a New Methodological Approach (Massif des Ecrins, French Alps),” Geomorphology, Vol. 35, No. , 2000, pp. 181-192.
[17] D. I. Benn and A. M. Gemmell, “Calculating Equilibrium-Line Altitudes of Former Glaciers by the Balance Ratio Method: A New Computer Spreadsheet,” Glacial Geology and Geomorphology, Vol. , No. , 1997, p. 7.
[18] T. C. Meierding, “Late Pleistocene Equilibrium-Line Altitudes in the Colorado Front Range: A Comparison of Methods,” Quaternary Research, Vol. 18, No. , 1982, pp. 289-310.
[19] A. Nesje and S. O. Dahl, “Glaciers and Environmental Change,” Arnold, London, 2000, p. 347.
[20] J. L. Edouard, “Les Lacs D’Altitude dans les Alpes Fran- ?aises,”Thesis, Université Grenoble I, Grenoble, 1994, p. 685.
[21] A. Allix, “Les glaciers des Alpes Fran?aises en 1921”, Revue de Géographie Alpine, Vol. X, 1922, pp.325-333. doi:10.3406/rga.1922.1697
[22] A. Allix, “Mémoire sur les observations glaciologiques, faites en Dauphiné jusqu’en 1924”, Etudes glaciologiques, Vol. VI, 1924, pp. 1-138.
[23] R. Blanchard, “La Crue Glaciaire dans les Alpes de Savoie au XVIIè Siècle”, Revue de Géographie Alpine, Vol. 1, 1913, pp. 443-454.
[24] J. L. Carrivick and T. R. Brewer, “Improving Local Esti- Mations and Regional Trends of Glacier Equilibrium Line Altitudes,” Geografiska Annaler: Series A, Physical Geography, Vol. 86, No. 1, March 2004, pp. 67-79. doi:10.1111/j.0435-3676.2004.00214.x
[25] D. Burbank and M. Fort, “Bedrock Control on Glacial Limits: Examples of the Ladakh and Zanskar Ranges, North-Western Himalaya, India,” Journal of Glaciology, Vol. 31, No. 108, 1985, pp. 143-149.
[26] E. Cossart, Y. Drocourt and B. Anselme, “Variations Gla-ciaires Dans les Andes de Mendoza Entre 1975 et 2007,” M@ppemonde, Vol. 97, 2010.
[27] R. Vivian, “Les Glaciers des Alpes Occidentales,” Thesis, Université Joseph Fourier-Grenoble I, Grenoble, 1975, p. 470.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.