Share This Article:

RETRACTED: A Participatory Iterative Mapping Approach and Evaluation of Three Machine Learning Algorithms for Accurate Mapping of Cropping Patterns in a Complex Agro-Ecosystems

Abstract Full-Text HTML Download Download as PDF (Size:4010KB) PP. 1-17
DOI: 10.4236/ars.2016.51001    4,500 Downloads   5,383 Views   Citations

ABSTRACT

Short Retraction Notice

This article has been retracted according to COPE's Retraction Guidelines. Since authors have their personal reasons, they have to withdraw this paper from journal Advances in Remote Sensing.

The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

  

References

[1] Atzberger, C. (2013) Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5, 949-981.
http://dx.doi.org/10.3390/rs5020949
[2] Food and Agriculture Organization of the United Nations (FAO) (2011) Global Strategy to Improve Agricultural and Rural Statistics. FAO, Rome.
[3] Mather, P. and Tso, B. (2009) Classification Methods for Remotely Sensed Data. CRC Press, Boca Raton.
[4] Zhong, L. (2012) Efficient Crop Type Mapping Based on Remote Sensing in the Central Valley, California. PhD Thesis, University of California, Berkeley.
[5] Wardlow, B.D., Egbert, S.L. and Kastens, J.H. (2007) Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the US Central Great Plains. Remote Sensing of Environment, 108, 290-310.
http://dx.doi.org/10.1016/j.rse.2006.11.021
[6] Long, J.A., Lawrence, R.L., Greenwood, M.C., Marshall, L. and Miller, P.R. (2013) Object-Oriented Crop Classification Using Multitemporal ETM+ SLC-Off Imagery and Random Forest. GIScience & Remote Sensing, 50, 418-436.
[7] Sakamoto, T., Gitelson, A.A. and Arkebauer, T.J. (2014) Near Real-Time Prediction of US Corn Yields Based on Time-Series MODIS Data. Remote Sensing of Environment, 147, 219-231.
http://dx.doi.org/10.1016/j.rse.2014.03.008
[8] Hmimina, G., Dufrêne, E., Pontailler, J.-Y., Delpierre, N., Aubinet, M., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C. and Granier, A. (2013) Evaluation of the Potential of MODIS Satellite Data to Predict Vegetation Phenology in Different Biomes: An Investigation Using Ground-Based NDVI Measurements. Remote Sensing of Environment, 132, 145-158.
http://dx.doi.org/10.1016/j.rse.2013.01.010
[9] Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S. and Nelson, A. (2014) Mapping Seasonal Rice Cropland Extent and Area in the High Cropping Intensity Environment of Bangladesh Using MODIS 500m Data for the Year 2010. ISPRS Journal of Photogrammetry and Remote Sensing, 91, 98-113.
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.007
[10] Peng, D.L., Huang, J.F., Li, C.J., Liu, L.Y., Huang, W.J., Wang, F.M. and Yang, X.H. (2014) Modelling Paddy Rice Yield Using MODIS Data. Agricultural and Forest Meteorology, 184, 107-116.
http://dx.doi.org/10.1016/j.agrformet.2013.09.006
[11] Busetto, L., Meroni, M. and Colombo, R. (2008) Combining Medium and Coarse Spatial Resolution Satellite Data to Improve the Estimation of Sub-Pixel NDVI Time Series. Remote Sensing of Environment, 112, 118-131.
http://dx.doi.org/10.1016/j.rse.2007.04.004
[12] Jain, M., Mondal, P., De Fries, R.S., Small, C. and Galford, G.L. (2013) Mapping Cropping Intensity of Smallholder Farms: A Comparison of Methods Using Multiple Sensors. Remote Sensing of Environment, 134, 210-223.
http://dx.doi.org/10.1016/j.rse.2013.02.029
[13] Gumma, M.K., Thenkabail, P.S., Hideto, F., Nelson, A., Dheeravath, V., Busia, D. and Rala, A. (2011) Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sensing, 3, 816-835.
http://dx.doi.org/10.3390/rs3040816
[14] Chen, C.-R., Chen, C.-F. and Son, N.-T. (2014) Rice Crop Monitoring with Multitemporal MODIS-Landsat Data Fusion. Proceedings of the EGU General Assembly Conference, Vienna, 27 April-2 May 2014.
[15] Rodriguez-Galiano, V., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J. (2012) An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS: Journal of Photogrammetry and Remote Sensing, 67, 93-104.
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
[16] Shao, Y. and Lunetta, R.S. (2012) Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points. ISPRS: Journal of Photogrammetry and Remote Sensing, 70, 78-87.
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
[17] Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014) Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? The Journal of Machine Learning Research, 15, 3133-3181.
[18] Li, C., Wang, J., Wang, L., Hu, L. and Gong, P. (2014) Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6, 964-983.
http://dx.doi.org/10.3390/rs6020964
[19] Qian, Y., Zhou, W., Yan, J., Li, W. and Han, L. (2014) Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7, 153-168.
http://dx.doi.org/10.3390/rs70100153
[20] Liu, M., Wang, M., Wang, J. and Li, D. (2013) Comparison of Random Forest, Support Vector Machine and Back Propagation Neural Network for Electronic Tongue Data Classification: Application to the Recognition of Orange Beverage and Chinese Vinegar. Sensors and Actuators B: Chemical, 177, 970-980.
http://dx.doi.org/10.1016/j.snb.2012.11.071
[21] Sonobe, R., Tani, H., Wang, X., Kobayashi, N. and Shimamura, H. (2014) Parameter Tuning in the Support Vector Machine and Random Forest and Their Performances in Cross- and Same-Year Crop Classification Using Terra SAR-X. International Journal of Remote Sensing, 35, 7898-7909.
http://dx.doi.org/10.1080/01431161.2014.978038
[22] Duro, D.C., Franklin, S.E. and Dubé, M.G. (2012) A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sensing of Environment, 118, 259-272.
http://dx.doi.org/10.1016/j.rse.2011.11.020
[23] Caruana, R. and Niculescu-Mizil, A. (2006) An Empirical Comparison of Supervised Learning Algorithms. Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, 25-29 June 2006.
http://dx.doi.org/10.1145/1143844.1143865
[24] Ben-Hur, A. and Weston, J. (2010) A User’s Guide to Support Vector Machines. In: Carugo, O. and Eisenhaber, F., Eds., Data Mining Techniques for the Life Sciences, Humana Press, New York, 223-239.
[25] Pal, M. (2005) Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26, 217-222.
http://dx.doi.org/10.1080/01431160412331269698
[26] Pal, M. and Mather, P.M. (2005) Support Vector Machines for Classification in Remote Sensing. International Journal of Remote Sensing, 26, 1007-1011.
http://dx.doi.org/10.1080/01431160512331314083
[27] Lek, S. and Guégan, J.-F. (2012) Artificial Neuronal Networks: Application to Ecology and Evolution. Springer Science & Business Media, New York.
[28] Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (1994) Machine Learning, Neural and Statistical Classification. Ellis Horwood Limited, Chichester.
[29] Exelis Visual Information Solutions, ENVI v. 5.2, Boulder, 2015.
[30] Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A. and Scrucca, L. (2015) Caret: Classification and Regression Training. R Package Version 6.0-41.
http://CRAN.R-project.org/package=caret
[31] R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna.
http://www.R-project.org
[32] Hijmans, R.J. (2015) Raster: Geographic Data Analysis and Modeling. R Package Version 2.3-24.
http://CRAN.R-project.org/package=raster
[33] Bivand, R., Keitt, T. and Rowlingson, B. (2014) Rgdal: Bindings for the Geospatial Data Abstraction Library. R Package Version 0.9-1.
http://CRAN.R-project.org/package=rgdal
[34] Sarkar, D. (2008) Lattice: Multivariate Data Visualization with R.
http://lmdvr.r-forge.r-project.org
[35] Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis.
http://had.co.nz/ggplot2/book
[36] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
http://dx.doi.org/10.1023/A:1010933404324
[37] Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A. (1984) Classification and Regression Trees. CRC Press, Boca Raton.
[38] Hsu, C.-W., Chang, C.-C. and Lin, C.-J. (2003) A Practical Guide to Support Vector Classification.
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
[39] Breiman, L. and Cutler, A. (2007) Random Forests-Classification Description. Department of Statistics, Berkeley.
[40] Congalton, R.G. and Green, K. (1999) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Lewis Publishers, Boca Raton, London and New York.
[41] Foody, G.M. (2004) Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy. Photogrammetric Engineering and Remote Sensing, 70, 627-633.
http://dx.doi.org/10.14358/PERS.70.5.627
[42] Hothorn, T., Leisch, F., Zeileis, A. and Hornik, K. (2005) The Design and Analysis of Benchmark Experiments. Journal of Computational and Graphical Statistics, 14, 675-699.
http://dx.doi.org/10.1198/106186005X59630
[43] Eugster, M.J., Hothorn, T. and Leisch, F. (2008) Exploratory and Inferential Analysis of Benchmark Experiments. Technical Report Number 030, Department of Statistics, University of Munich, Munich.
[44] Foody, G.M. (2009) Classification Accuracy Comparison: Hypothesis Tests and the Use of Confidence Intervals in Evaluations of Difference, Equivalence and Non-Inferiority. Remote Sensing of Environment, 113, 1658-1663.
http://dx.doi.org/10.1016/j.rse.2009.03.014
[45] Mialhe, F., Gunnell, Y., Ignacio, J.A.F., Delbart, N., Ogania, J.L. and Henry, S. (2015) Monitoring Land-Use Change by Combining Participatory Land-Use Maps with Standard Remote Sensing Techniques: Showcase from a Remote Forest Catchment on Mindanao, Philippines. International Journal of Applied Earth Observation and Geoinformation, 36, 69-82.
http://dx.doi.org/10.1016/j.jag.2014.11.007
[46] Adam, E., Mutanga, O., Odindi, J. and Abdel-Rahman, E.M. (2014) Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using RapidEye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers. International Journal of Remote Sensing, 35, 3440-3458.
http://dx.doi.org/10.1080/01431161.2014.903435
[47] Cracknell, M.J. and Reading, A.M. (2014) Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information. Computers & Geosciences, 63, 22-33.
http://dx.doi.org/10.1016/j.cageo.2013.10.008
[48] Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. and Arriaga-Weiss, S. (2010) Classification in Conservation Biology: A Comparison of Five Machine-Learning Methods. Ecological Informatics, 5, 441-450.
http://dx.doi.org/10.1016/j.ecoinf.2010.06.003
[49] Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I. and de Mendonça, A. (2011) Data Mining Methods in the Prediction of Dementia: A Real-Data Comparison of the Accuracy, Sensitivity and Specificity of Linear Discriminant Analysis, Logistic Regression, Neural Networks, Support Vector Machines, Classification Trees and Random Forests. BMC Research Notes, 4, 299.
http://dx.doi.org/10.1186/1756-0500-4-299
[50] Snoek, J., Larochelle, H. and Adams, R.P. (2012) Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural Information Processing Systems, 25, 2960-2968.
[51] Wardlow, B.D. and Egbert, S.L. (2010) A Comparison of MODIS 250-m EVI and NDVI Data for Crop Mapping: A Case Study for Southwest Kansas. International Journal of Remote Sensing, 31, 805-830.
http://dx.doi.org/10.1080/01431160902897858
[52] Fensholt, R., Sandholt, I. and Stisen, S. (2006) Evaluating MODIS, MERIS, and VEGETATION Vegetation Indices Using in Situ Measurements in a Semiarid Environment. IEEE Transactions on Geoscience and Remote Sensing, 44, 1774-1786.
http://dx.doi.org/10.1109/TGRS.2006.875940

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.