Share This Article:

The Odd Generalized Exponential Gompertz Distribution

Abstract Full-Text HTML XML Download Download as PDF (Size:3380KB) PP. 2340-2353
DOI: 10.4236/am.2015.614206    4,292 Downloads   4,747 Views   Citations

ABSTRACT

In this paper we propose a new lifetime model, called the odd generalized exponential gompertz distribution. We obtained some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters and the observed Fisher’s information matrix is derived. We illustrate the usefulness of the proposed model by applications to real data.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

El-Damcese, M. , Mustafa, A. , El-Desouky, B. and Mustafa, M. (2015) The Odd Generalized Exponential Gompertz Distribution. Applied Mathematics, 6, 2340-2353. doi: 10.4236/am.2015.614206.

References

[1] Pollard, J.H. and Valkovics, E.J. (1992) The Gompertz Distribution and Its Applications. Genus, 48, 15-28.
[2] Marshall, A.W. and Olkin, I. (2007) Life Distributions. Structure of Nonparametric, Semiparametric and Parametric Families. Springer, New York.
[3] Abu-Zinadah, H.H. and Aloufi, A.S. (2014) Some Characterizations of the Exponentiated Gompertz Distribution. International Mathematical Forum, 9, 1427-1439.
[4] El-Gohary, A., Alshamrani, A. and Al-Otaibi, A.N. (2013) The Generalized Gompertz Distribution. Applied Mathematical Modelling, 37, 13-24.
http://dx.doi.org/10.1016/j.apm.2011.05.017
[5] Eugene, N., Lee, C. and Famoye, F. (2002) Beta-Normal Distribution and Its Applications. Communications in Statistics-Theory and Methods, 31, 497-512.
http://dx.doi.org/10.1081/STA-120003130
[6] Jafari, A.A., Tahmasebi, S. and Alizadeh, M. (2014) The Beta-Gompertz Distribution. Revista Colombiana de Esta-distica, 37, 141-158.
http://dx.doi.org/10.15446/rce.v37n1.44363
[7] Mudholkar, G.S. and Srivastava, D.K. (1993) Exponentiated Weibull Family for Analyzing Bathtub Failure Data. IEEE Transactions on Reliability, 42, 299-302.
http://dx.doi.org/10.1109/24.229504
[8] Tahir, M.H., Cordeiro, G.M., Alizadeh, M., Mansoor, M., Zubair, M. and Hamedani, G.G. (2015) The Odd Generalized Exponential Family of Distributions with Applications. Journal of Statistical Distributions and Applications, 2, 1-28.
http://dx.doi.org/10.1186/s40488-014-0024-2
[9] Aarset, M.V. (1987) How to Identify a Bathtub Hazard Rate. IEEE Transactions on Reliability, 36, 106-108.
http://dx.doi.org/10.1109/TR.1987.5222310
[10] Gupta, R.D. and Kundu, D. (2007) Generalized Exponential Distribution: Existing Results and Some Recent Developments. Journal of Statistical Planning and Inference, 137, 3537-3547.
http://dx.doi.org/10.1016/j.jspi.2007.03.030
[11] Gupta, R.D. and Kundu, D. (2001) Generalized Exponential Distribution: Different Method of Estimations. Journal of Statistical Computation and Simulation, 69, 315-337.
http://dx.doi.org/10.1080/00949650108812098
[12] Lenart, A. (2014) The Moments of the Gompertz Distribution and Maximum Likelihood Estimation of Its Parameters. Scandinavian Actuarial Journal, 2014, 255-277.
http://dx.doi.org/10.1080/03461238.2012.687697
[13] Nadarajah, S. and Kotz, S. (2006) The Beta Exponential Distribution. Reliability Engineering & System Safety, 91, 689-697.
http://dx.doi.org/10.1016/j.ress.2005.05.008
[14] Pasupuleti, S.S. and Pathak, P. (2010) Special Form of Gompertz Model and Its Application. Genus, 66, 95-125.
[15] Gupta, R.D. and Kundu, D. (1999) Generalized Exponential Distribution. Australian and New Zealand Journal of Statistics, 41, 173-188.
http://dx.doi.org/10.1111/1467-842X.00072

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.