Share This Article:

Radiation Forces on a Dielectric Sphere Produced by Finite Olver-Gaussian Beams

Abstract Full-Text HTML XML Download Download as PDF (Size:2751KB) PP. 344-353
DOI: 10.4236/opj.2015.512033    3,890 Downloads   4,243 Views   Citations

ABSTRACT

In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs on a Rayleigh dielectric sphere. Our numerical results show that the FOGBs can be employed to trap and manipulate particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths. The trapping stability under different conditions is also analyzed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hennani, S. , Ez-zariy, L. and Belafhal, A. (2015) Radiation Forces on a Dielectric Sphere Produced by Finite Olver-Gaussian Beams. Optics and Photonics Journal, 5, 344-353. doi: 10.4236/opj.2015.512033.

References

[1] Siviloglou, G.A. and Christodoulides, D.N. (2007) Accelerating Finite Energy Airy Beams. Optics Letters, 32, 979-981.
http://dx.doi.org/10.1364/OL.32.000979
[2] Siviloglou, G.A., Broky, J., Dogariu, A. and Christodoulides, D.N. (2007) Observation of Accelerating Airy Beams. Physical Review Letters, 99, 213901.
http://dx.doi.org/10.1103/PhysRevLett.99.213901
[3] Berry, M.V. and Balazs, N.L. (1979) Nonspreading Wave Packets. American Journal of Physics, 4, 264-267.
http://dx.doi.org/10.1119/1.11855
[4] Siviloglou, G.A., Broky, J., Dogariu, A. and Christodoulides, D.N. (2008) Ballistic Dynamics of Airy Beams. Optics Letters, 33, 207-209.
http://dx.doi.org/10.1364/OL.33.000207
[5] Besieris, I.M. and Shaarawi, A.M. (2007) A Note on an Accelerating Finite Energy Airy Beam. Optics Letters, 32, 2447-2449.
http://dx.doi.org/10.1364/OL.32.002447
[6] Ashkin, A. (1970) Atomic-Beam Deflection by Resonance-Radiation Pressure. Physical Review Letters, 25, 1321.
http://dx.doi.org/10.1103/PhysRevLett.25.1321
[7] Yavuz, D.D., Kulatunga, P.B., Urban, E., Johnson, T.A., Proite, N., Henage, T., Saffman, M., et al. (2006) Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps. Physical Review Letters, 96, 063001.
http://dx.doi.org/10.1103/PhysRevLett.96.063001
[8] Calander, N. and Willander, M. (2002) Optical Trapping of Single Fluorescent Molecules at the Detection Spots of Nanoprobes. Physical Review Letters, 89, 143603.
http://dx.doi.org/10.1103/PhysRevLett.89.143603
[9] Taguchi, K., Ueno, H. and Ikeda, M. (1997) Rotational Manipulation of a Yeast Cell Using Optical Fibres. Electronics Letters, 33, 1249-1250.
http://dx.doi.org/10.1049/el:19970827
[10] Day, C. (2006) Optical Trap Resolves the Stepwise Transfer of Genetic Information from DNA to RNA. Physics Today, 59, 26-27.
http://dx.doi.org/10.1063/1.2180165
[11] Mao, F.L., Xing, Q.R., Wang, K., Lang, L.Y., Wang, Z., Chai, L. and Wang, Q.Y. (2005) Optical Trapping of Red Blood Cells and Two-Photon Excitation-Based Photodynamic Study Using a Femtosecond Laser. Optics Communications, 256, 358-363.
http://dx.doi.org/10.1016/j.optcom.2005.06.076
[12] Chang, Y.R., Hsu, L. and Chi, S. (2005) Optical Trapping of a Spherically Symmetric Rayleigh Sphere: A Model for Optical Tweezers upon Cells. Optics Communications, 246, 97-105.
http://dx.doi.org/10.1016/j.optcom.2004.10.066
[13] Xie, C.G. and Li, Y.Q. (2003) Confocal Micro-Raman Spectroscopy of Single Biological Cells Using Optical Trapping and Shifted Excitation Difference Techniques. Journal of Applied Physics, 93, 2982-2986.
http://dx.doi.org/10.1063/1.1542654
[14] Neuman, K.C. and Block, S.M. (2004) Optical Trapping. Review of Scientific Instruments, 75, 2787-2809.
http://dx.doi.org/10.1063/1.1785844
[15] Furst, E.M. (2003) Interactions, Structure, and Microscopic Response: Complex Fluid Rheology Using Laser Tweezers. Soft Materials, 1, 167-185.
http://dx.doi.org/10.1081/SMTS-120022462
[16] Ashkin, A. (1992) Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophysical Journal, 61, 569-582.
http://dx.doi.org/10.1016/S0006-3495(92)81860-X
[17] Ashkin, A. (2000) History of Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules. IEEE Journal of Selected Topics in Quantum Electronics, 6, 841-856.
http://dx.doi.org/10.1109/2944.902132
[18] Grzegorczyk, T.M., Kemp, B.A. and Kong, J.A. (2006) Stable Optical Trapping Based on Optical Binding Forces. Physical Review Letters, 96, 113903.
http://dx.doi.org/10.1103/PhysRevLett.96.113903
[19] O’Neil, A.T. and Padgett, M.J. (2000) Three-Dimensional Optical Confinement of Micron-Sized Metal Particles and the Decoupling of the Spin and Orbital Angular Momentum within an Optical Spanner. Optics Communications, 185, 139-143.
http://dx.doi.org/10.1016/S0030-4018(00)00989-5
[20] Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y. and Sasada, H. (1997) Novel Optical Trap of Atoms with a Doughnut Beam. Physical Review Letters, 78, 4713.
http://dx.doi.org/10.1103/PhysRevLett.78.4713
[21] Gahagan, K.T. and Swartzlander, G.A. (1996) Optical Vortex Trapping of Particles. Optics Letters, 21, 827-829.
http://dx.doi.org/10.1364/OL.21.000827
[22] Dienerowitz, M., Mazilu, M., Reece, P.J., Krauss, T.F. and Dholakia, K. (2008) Optical Vortex Trap for Resonant Confinement of Metal Nanoparticles. Optics Express, 16, 4991-4999.
http://dx.doi.org/10.1364/OE.16.004991
[23] Zhao, C.L., Wang, L.G. and Lu, X.H. (2007) Radiation Forces on a Dielectric Sphere Produced by Highly Focused Hollow Gaussian Beams. Physics Letters A, 363, 502-506.
http://dx.doi.org/10.1016/j.physleta.2006.11.028
[24] Zhao, C., Wang, L. and Lu, X. (2008) Radiation Forces of Highly Focused Bessel-Gaussian Beams on a Dielectric Sphere. Optik-International Journal for Light and Electron Optics, 119, 477-480.
http://dx.doi.org/10.1016/j.ijleo.2006.11.013
[25] Zhan, Q.W. (2003) Radiation Forces on a Dielectric Sphere Produced by Highly Focused Cylindrical Vector Beams. Journal of Optics A: Pure and Applied Optics, 5, 229.
http://dx.doi.org/10.1088/1464-4258/5/3/314
[26] Wang, L.G. and Zhao, C.L. (2007) Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on Rayleigh Dielectric Sphere. Optics Express, 15, 10615-10621.
http://dx.doi.org/10.1364/OE.15.010615
[27] Zhao, C., Cai, Y., Lu, X. and Eyyuboglu, H.T. (2009) Radiation Force of Coherent and Partially Coherent Flat-Topped Beams on a Rayleigh Particle. Optics Express, 17, 1753-1765.
http://dx.doi.org/10.1364/OE.17.001753
[28] Polynkin, P., Kolesik, M., Moloney, J.V., Siviloglou, G.A. and Christodoulides, D.N. (2009) Curved Plasma Channel Generation Using Ultraintense Airy Beams. Science, 324, 229-232.
http://dx.doi.org/10.1126/science.1169544
[29] Li, J.X., Zang, W.P. and Tian, J.G. (2010) Vacuum Laser-Driven Acceleration by Airy Beams. Optics Express, 18, 7300-7306.
http://dx.doi.org/10.1364/OE.18.007300
[30] Chong, A., Renninger, W.H., Christodoulides, D.N. and Wise, F.W. (2010) Airy-Bessel Wave Packets as Versatile Linear Light Bullets. Nature Photonics, 4, 103-106.
http://dx.doi.org/10.1038/nphoton.2009.264
[31] Baumgartl, J., Mazilu, M. and Dholakia, K. (2008) Optically Mediated Particle Clearing Using Airy Wavepackets. Nature Photonics, 2, 675-678.
http://dx.doi.org/10.1038/nphoton.2008.201
[32] Baumgartl, J., Hannappel, G.M., Stevenson, D.J., Day, D., Gu, M. and Dholakia, K. (2009) Optical Redistribution of Microparticles and Cells between Microwells. Lab on a Chip, 9, 1334-1336.
http://dx.doi.org/10.1039/b901322a
[33] Harada, Y. and Asakura, T. (1996) Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Optics Communications, 124, 529-541.
http://dx.doi.org/10.1016/0030-4018(95)00753-9
[34] Rohrbach, A. and Stelzer, E.H. (2001) Optical Trapping of Dielectric Particles in Arbitrary Fields. Journal of Optics A: Pure and Applied Optics, 18, 839-853.
http://dx.doi.org/10.1364/JOSAA.18.000839
[35] Zemánek, P., Jonás, A., Srámek, L. and Liska, M. (1998) Optical Trapping of Rayleigh Particles Using a Gaussian Standing Wave. Optics Communications, 151, 273-285.
http://dx.doi.org/10.1016/S0030-4018(98)00093-5
[36] Cheng, H., Zang, W., Zhou, W. and Tian, J. (2010) Analysis of Optical Trapping and Propulsion of Rayleigh Particles Using Airy Beam. Optics Express, 18, 20384-20394.
http://dx.doi.org/10.1364/OE.18.020384
[37] Svoboda, K. and Block, S.M. (1994) Biological Applications of Optical Forces. Annual Review of Biophysics and Biomolecular Structure, 23, 247-285.
http://dx.doi.org/10.1146/annurev.bb.23.060194.001335
[38] Belafhal, A., Ez-Zariy, L., Hennani, S. and Nebdi, H. (2015) Theoretical Introduction and Generation Method of a Novel Nondiffracting Waves: Olver Beams. Optics and Photonics Journal, 5, 234-246.
http://dx.doi.org/10.4236/opj.2015.57023
[39] Hennani, S., Ez-zariy, L. and Belafhal, A. (2015) Propagation Properties of Finite Olver-Gaussian Beams Passing through a Paraxial ABCD Optical System. Optics and Photonics Journal, 5, 273-294.
http://dx.doi.org/10.4236/opj.2015.59026

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.