Share This Article:

Heavy Metal Concentrations in Pores and Surface Waters during the Emptying of a Small Reservoir

Abstract Full-Text HTML XML Download Download as PDF (Size:590KB) PP. 66-72
DOI: 10.4236/gep.2015.310011    2,491 Downloads   2,785 Views   Citations

ABSTRACT

The impact of reservoir emptying on the concentrations of dissolved heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in pore and surface waters was studied in the Aar Reservoir, a small reservoir in central Germany, during and after the emptying process. This study was conducted to observe binding changes within pore waters as well as the input of dissolved heavy metals in waters of the Aar Creek, what becomes possible when the reservoirs water table is removed and lake sediments become exposed. In pore waters, no clear shifting tendencies between dissolved and sorbed heavy metal fractions could be found after the completed sediment exposure. These relatively low dynamics in pore waters can be explained by the fine texture of the lake sediments, which are characterized by a high water holding capacity, what led to high remaining water contents and therefore slowed down the redox changes. A few days after the completed emptying, a general increase of dissolved heavy metal concentrations occurred in running waters of the Aar Creek as a result of pore water drainage. Here, element specific differences in mobilization and transportation abilities were found, what can be reconstructed by the ratio of dissolved heavy metals in pore and surface waters.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Opp, C. , Hahn, J. , Zitzer, N. and Laufenberg, G. (2015) Heavy Metal Concentrations in Pores and Surface Waters during the Emptying of a Small Reservoir. Journal of Geoscience and Environment Protection, 3, 66-72. doi: 10.4236/gep.2015.310011.

References

[1] Alloway, B.J., Ed. (1990) Heavy Metals in Soils. Wiley, New York.
[2] Schulz-Zunkel, C. and Krüger, F. (2009) Trace Metal Dynamics in Floodplain Soils of the River Elbe: A Review. Journal of Environmental Quality, 38, 1349-1362. http://dx.doi.org/10.2134/jeq2008.0299
[3] Fenninger, A., Stattegger, K., Manser, P., Plass, N. and Scholger, R. (1988) Sedimentgeologische Untersuchungen an Stauraumsedimenten der Mur: Eine Vorstudie am Beispiel der Staustufe Mellach. Mitteilungen des Naturwissenschaftlichen Vereins für Steiermark, 118, 107-118.
[4] Westrich, B., Kern, U. and Haag, I. (2000) Mobilit?t von Schadstoffen in den Sedimenten staugeregelter Flüsse- Dynamik und Bilanzierung von Schwebstoffen und Schwermetallen in einer Stauhaltungskette. http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/5121/
[5] Ulrich, K.U., Paul, L. and Hupfer, M. (2000) Schadstoffgehalte in den Sedimenten von Staugew?ssern. Wasser und Boden, 52/10, 27-32.
[6] Guo, T., De Laune, R.D. and Patrick, W.H. (1997) The Influence of Sediment Redox Chemistry on Chemically Active Forms of Arsenic, Cadmium, Chromium and Zink in Estuarine Sediment. Environment International, 23/3, 305-316. http://dx.doi.org/10.1016/S0160-4120(97)00033-0
[7] Van den Berg, G.A., Loch, J.P. and Winkels, H.J. (1998) Effect of Fluctuating Hydrological Conditions on the Mobility of Heavy Metals in Soils of a Freshwater Estuary in the Netherlands. Water, Air and Soil Pollution, 102, 377-388. http://dx.doi.org/10.1023/A:1004920700598
[8] Ahearn, D.S. and Dahlgren, R.A. (2005) Sediment and Nutrient Dynamics Following a Low-Head Dam Removal at Murphy Creek, California. Limnology and Oceanography, 50, 1752-1762. http://dx.doi.org/10.4319/lo.2005.50.6.1752
[9] Bushaw-Newton, K., Hart, D., Pizzuto, J., Thomson, J., Egan, J., Ashley, J., Johnson, D., Horwitz, R., Keeley, M., Lawrence, J., Charles, D., Gatenby, C., Kreeger, D., Nightengale, T., Thomas, R. and Velinsky, D. (2002) An Integrative Approach towards Understanding Ecological Responses to Dam Removal: The Manatawny Creec Study. Journal of the American Water Resources Association, 38, 1581-1599. http://dx.doi.org/10.1111/j.1752-1688.2002.tb04366.x
[10] Dagnac, J. (1994) Bilan des depots sedimentaires dans la reservoir de Pareloup (Aveyron, France). Hydroecologie Applique, 6, 59-85. http://dx.doi.org/10.1051/hydro:1994004
[11] Merle, G., Mosnier, D. and Tourenq, J.N. (1994) La vindange de la retenue de Pareloup en 1993: Une etape-clef dans la vie du lac. Hydroecologie Applique, 6, 427-446. http://dx.doi.org/10.1051/hydro:1994018
[12] Orr, C.H., Rogers, K.L. and Stanley, E.H. (2006) Channel Morphology and P Uptake Following Removal of a Small Dam. Journal of the North American Benthological Society, 25, 556-568. http://dx.doi.org/10.1899/0887-3593(2006)25[556:CMAPUF]2.0.CO;2
[13] Stanley, E.H. and Doyle, M.W. (2002) A Geomorphic Perspective on Nutrient Retention Following Dam Removal. Bioscience, 52, 693-701. http://dx.doi.org/10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2
[14] Ulrich, K.U. (1998) Vergleichende Untersuchungen zu Auswirkungen des Sediments auf die Wasserbeschaffenheit in Trinkwassertalsperren unter Berücksichtigung von Stauspiegelschwankungen. Cuvillier, G?ttingen.
[15] Hampel, U. (2013) Schwermetallkonzentrationen in Bach- und Ufersedimenten im Einzugsgebiet der Aartalsperre. Diploma Thesis, Philipps-University of Marburg, Marburg.
[16] LABO (Bund- und L?nderarbeitsgemeinschaft Bodenschutz) (2003) Hintergrundwerte für anorganische und organische Stoffe in B?den. 3rd Edition. http//:www.labo-deutschland.de/documents/LABO-HGW-Text_4e3.pdf
[17] Gambrell, R.P., Wiesepape, J.B., Patrick, W.H. and Duff, M.C. (1991) The Effects of pH, Redox, and Salinity on Metal Release from a Contaminated Sediment. Water, Air and Soil Pollution, 57-58, 359-367. http://dx.doi.org/10.1007/BF00282899
[18] Saeki, K., Okazaki, M. and Matsumoto, S. (1993) The Chemical Phase Changes of Heavy Metals with Drying and Oxidation of the Lake Sediments. Water Research, 27/7, 1243-1251. http://dx.doi.org/10.1016/0043-1354(93)90017-C
[19] Alloway, B.J. and Ayres, D.C. (1996) Schadstoffe in der Umwelt. Spektrum, Heidelberg.
[20] Cheng, H., Hu, Y., Luo, J., Xu, B. and Zhao, J. (2009) Geochemical Processes Con-trolling Fate and Transport of Arsenic in Acid Mine Drainage (AMD) and Natural Systems. Journal of Hazardous Materials, 165, 13-26. http://dx.doi.org/10.1016/j.jhazmat.2008.10.070
[21] F?rstner, U., Calmano, W. and Ahlf, G. (1999) Sedimente als Schadstoffsenken und -quellen: Ged?chtnis, Schutzgut, Zeitbombe, Endlager. In: Frimmel, F., Ed., Wasser und Gew?sser: Ein Handbuch. Spektrum, Heidelberg.
[22] LAWA (L?nderarbeitsgemeinschaft Wasser) (1998) Zielvorgaben zum Schutz oberirdischer Binnengew?sser, Band II. Kulturbuchverlag, Berlin.
[23] UBA (Umweltbundesamt) (2001) Sachstandsbericht: Abtrag von Kupfer und Zink von D?chern, Dachrinnen und Fallrohren durch Niederschl?ge. https://www.umweltbundesamt.de/publikationen/abtrag-von-kupfer-zink-von-daechern-dachrinnen
[24] Stanley, E.H. and Doyle, M.W. (2003) Trading off: The Ecological Effects of Dam Removal. Frontiers in Ecology and the Envi-ronment, 1, 15-22. http://dx.doi.org/10.1890/1540-9295(2003)001[0015:TOTEEO]2.0.CO;2
[25] Gray L.J. and Ward, J.V. (1982) Effects of Sediment Releases from a Reservoir on Stream Macroinvertebrates. Hydrobiologia, 96, 177-184. http://dx.doi.org/10.1007/BF02185433

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.