Share This Article:

Understanding the Variability of Z-R Relationships Caused by Natural Variations in Raindrop Size Distributions (DSD): Implication of Drop Size and Number

Abstract Full-Text HTML Download Download as PDF (Size:3582KB) PP. 147-164
DOI: 10.4236/acs.2011.13017    6,161 Downloads   11,067 Views   Citations

ABSTRACT

In the issue of rainfall estimation by radar through the necessary relationship between radar reflectivity Z and rain rate R (Z-R), the main limitation is attributed to the variability of this relationship. Indeed, several pre-vious studies have shown the great variability of this relationship in space and time, from a rainfall event to another and even within a single rainfall event. Recent studies have shown that the variability of raindrop size distributions and thereby Z-R relationships is therefore, more the result of complex dynamic, thermody-namic and microphysical processes within rainfall systems than a convective/stratiform classification of the ground rainfall signature. The raindrop number and size at ground being the resultant of various processes mentioned above, a suitable approach would be to analyze their variability in relation to that of Z-R relation-ship. In this study, we investigated the total raindrop concentration number NT and the median volume di-ameter D0 used in numerous studies, and have shown that the combination of these two ‘observed’ parame-ters appears to be an interesting approach to better understand the variability of the Z-R relationships in the rainfall events, without assuming a certain analytical raindrop size distribution model (exponential, gamma, or log-normal). The present study is based on the analysis of disdrometer data collected at different seasons and places in Africa, and aims to show the degree of the raindrop size and number implication in regard to the Z-R relationships variability.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Ochou, E. Zahiri, B. Bamba and M. Koffi, "Understanding the Variability of Z-R Relationships Caused by Natural Variations in Raindrop Size Distributions (DSD): Implication of Drop Size and Number," Atmospheric and Climate Sciences, Vol. 1 No. 3, 2011, pp. 147-164. doi: 10.4236/acs.2011.13017.

References

[1] J. S. Marshall, and W. M. K. Palmer, “The distribution of raindrops with size,” J. Meteor., Vol. 5, 1948, pp. 165- 166.
[2] J. Joss, and A. Waldvogel,“Raindrop size distribution and Doppler velocities,” Proceedings 14th Radar Meteorology Conference, Boston, 1970, pp. 153-156.
[3] P.T. Willis, “Functional fit to some observed drop size distributions and parameterization of rain,” J. Atmos. Sci., Vol. 41, 1984, pp. 1648-1661.
[4] H. Sauvageot, and J. P. Lacaux, “The shape of averaged drop size distributions,” J. Atmos. Sci., Vol. 52, 1995, pp. 1070-1083.
[5] A. Tokay, and D. A. Short, “Convective vs stratiform rain in the West pacific during TOGA COARE: evidence from raindrop spectra,” J. Appl. Meteor., Vol. 35, 1996, pp. 355-371.
[6] J. Testud, S. Oury, R. A. Black, P. Amayenc and X. Dou, “The concept of normalized distribution to describe raindropspectra: A tool for cloud physics and cloud remote sensing,” J. Appl. Meteor., Vol. 40, 2001, pp. 1118-1140.
[7] M. Maki, T. D. Keenam, Y. Sasaki and K. Nakamura, “Characteristics of the raindrop size distribution in tropical continental squall lines observed in darwin, Australia,” J. Appl. Meteor. Vol. 40, 2001, pp. 1393-1412.
[8] R. Uijlenhoet, J.A. Smith, and M. Steiner, “The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra,” J. Atmos. Sci., Vol. 60, 2003, pp. 1220-1238.
[9] R. Uijlenhoet, M. Steiner, and J. A. Smith, “Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation,” J. Hydrometeor, Vol. 4, 2003, pp. 43-61.
[10] G. W. Lee, and I. Zawadzki, “Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation,” J. Appl. Meteor., Vol. 44, 2005, pp. 241-255.
[11] A. Nzeukou, H. Sauvageot, A. D. Ochou, C. M. F. Kebe, “Raindrop size distribution and radar parameters at Cape Verde,” J. Appl. Meteorol., Vol. 43, 2004, pp. 90-105.
[12] S. Moumouni, M. Gosset, E. Houngninou, “Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers,” Geophys. Res. Lett., Vol. 35, L23807, 2008, doi:10.1029/2008GL035755.
[13] L. J. Battan, “Radar observation of the atmosphere,” University of Chicago Press, 1973.
[14] B. Russell, E. R. Williams, M. Gosset, F. Cazenave, L. Descroix, N. Guy, T. Lebel, A. Ali, F. Metayer, G. Quan- tin, “Radar rain-gauge comparisons on squall lines in Niamey, Niger for the AMMA,” Q. J. R. Meteorol. Soc., 136(s1), 2010, pp. 290-304.
[15] A.D. Ochou, "Variabilité spatio-temporelle des moments statistiques des distributions des gouttes de pluie et conséquences sur la mesure des précipitations par télédétection micro-ondes," Ph.D. dissertation, Université Cocody- Abidjan, 2003.
[16] M. Steiner, J. A. Smith, R. Uijlenhoet, “A microphysical interpretation of radar reflectivity-rain rate relationships,” J. Atmos. Sci., Vol. 61, 2004, pp. 1114-1131.
[17] S. E. Yuter, and R. A. Houze, “Measurements of raindrop size distribution over the Pacific Warm Pool and implementations for Z-R relations,” J. Appl. Meteor., Vol. 36, 1997, pp. 847-867.
[18] A. Tokay, D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, “Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements,” J. Appl. Meteor., Vol. 38, 1999, pp. 302-320.
[19] D. Atlas, C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, “Systematic variation of drop size and radar-rainfall relations,” J. Geophys. Res., Vol. 104, D6, 1999, pp. 6155–6169.
[20] D. Atlas, C. W. Ulbrich, F. D. Marks Jr., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, “Partitioning tropical oceanic convective and stratiform rains by draft strength,” J. Geophys. Res., Vol. 105, 2000, pp. 2259- 2267.
[21] C. W. Ulbrich, D. Atlas, “On the separation of tropical convective and stratiform rains,” J. Appl. Meteor., Vol. 41, 2002, pp. 188-195.
[22] T. Narayana Rao, D. Narayana Rao, K. Mohan, “Classification of tropical precipitating systems and associated Z-R relationships,” J. Geophys. Res., Vol. 104, 2001, pp. 17699-17711.
[23] D. Rosenfeld, and C. W. Ulbrich, "Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A collection of essays in honor of David Atlas,” Meteor. Monogr., No. 52, Amer. Meteor. Soc., 2003, pp. 237-258.
[24] J. W. F. Goddard, and S.M. Cherry, “The ability of dual polarization radar (co-polar linear) to predict rainfall rate and microwave attenuation,” Radio Sci., Vol. 19, 1984, pp. 201-208.
[25] N. Balakrishnan, D. S. Zrnic, J. Goldhirsh, and J. Rowland, “Comparison of simulated rain rate from disdrometer data employing polarimetric radar algorithms,” J. Atmos. Oceanic. Technol., Vol. 6, 1989, pp. 476-486.
[26] J. Joss, and A. Waldvogel, “Raindrop size distribution and sampling size errors,” J. Atmos. Sci., Vol. 26, 1969, pp. 566-569.
[27] D. Atlas, R. C. Srivastava, and R. S. Sekhon, “Doppler radar characteristics at vertical incidence,” Rev. Geophys. Space, Vol. 11, 1973, pp. 1-35.
[28] R. A. Houze Jr., Cloud Dynamics, Academic Press, 1993.
[29] M. Steiner, R. A. Houze Jr., and S. E. Yuter, “Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data,” J. Appl. Meteor., Vol. 34, 1995, pp. 1978-2007.
[30] A. Waldvogel, “The N0 jump of raindrop spectra,” J. Atmos. Sci., Vol. 31, 1974, pp. 1068-1078.
[31] M. Gosset, E.-P. Zahiri, and S. Moumouni, “Rain drop size distribution variability and impact on X-band polarimetric radar retrieval: results from the AMMA campaign in Benin,” Q. J. R. Meteorol. Soc., Vol. 136 (s1), 2010, pp. 243-356.
[32] R., Uijlenhoet, “Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology,” Hydrology and Earth System Sciences, Vol. 5(4), 2001, pp. 615-627.
[33] C. W. Ulbrich, and D. Atlas, “Radar measurements of rainfall with and without polarimetry,” J. Appl. Meteor. Clim. 2008, DOI: 10.1175/2007JAMC1804.1.
[34] V. Chandrasekar, R. Meneghini, and I. Zawadzki, “Global and local precipitation measurements by radar. Radar and Atmospheric Science: A collection of essays in honor of David Atlas,” Meteor. Monogr., No. 52, Amer. Meteor. Soc., 2003, pp. 215-236.
[35] W. J. Heinrich, J. Joss, and A. Waldvogel, “Raindrop size distributions and the radar bright band,” J. Appl. Meteor., Vol. 35, 1996, pp. 1688-1701.
[36] C. W. Ulbrich, and D. Atlas, Microphysics of raindrop size spectra: tropical continental and maritime storms, J. Appl. Meteor. Clim., Vol. 46, 2007, pp. 1777-1791.
[37] A. D. Ochou, A. Nzeukou, and H. Sauvageot, “Parametrization of drop size distribution with rain rate,” Atmos. Res., Vol. 84, 2007, pp. 58-66.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.