Share This Article:

Optimization of the Angle of Frog in Mouldboard Tillage Operations in Sandy Clay Soil

Abstract Full-Text HTML XML Download Download as PDF (Size:1049KB) PP. 131-140
DOI: 10.4236/ojop.2015.44013    3,170 Downloads   3,690 Views   Citations


This paper investigated the effect of three independent variables including: tillage speed (ranges of below 2.5 m/s and between 2.5 m/s and 5 m/s), tillage depth (range of 10 cm from 0 cm to 30 cm) and frog angle (30° 40°, and 50°) on draught forces. The experimental work was completed with determination of the draught forces using an analytical method (Saunders Equation). Numerical Simulation: Discrete Element Method (DEM) was used to verify the results obtained analytically. The results indicated that tillage depth has a stronger influence on the draught forces as compared to the tillage speed. Minimal draught forces can then be achieved through operating at shallow tillage depth and maintaining a frog angle of 30°. The results showed a variance of ±15.95% to the calculated values supporting DEM as a numerical method capable of predicting draft forces correctly, tillage power optimization and determination of optimal frog angle for the mouldboard plough.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hiuhu, A. , Gitau, A. , Mbuge, D. and Mulwa, J. (2015) Optimization of the Angle of Frog in Mouldboard Tillage Operations in Sandy Clay Soil. Open Journal of Optimization, 4, 131-140. doi: 10.4236/ojop.2015.44013.


[1] Formato, A. Faugno, S. and Paolillo, G. (2005) Numerical Simulation of Soil Plough Mouldboard Interaction. Biosystems Engineering, 92, 309-316.
[2] Kushwaha, R.L. and Zhang, J. (1998) Dynamic Analysis of a Tillage Tool Part 1—Finite Element Model. Canada Agricultural Engineering, 40, 287-292.
[3] Owend, P.M.O. and Edward, S.M. (1996) Characteristic Loading of Light Mouldboard Ploughs at Low Speeds. Journal of Terramechanics, 335, 29-53.
[4] Shrestha, D.S., Sing, G. and Gebresenbet, G. (2001) Optimizing Design Parameters of a Mouldboard Plough. Journal of Agricultural Engineering Research, 78, 377-389.
[5] Godwin, R.J., O’ Dogherty, M.J., Saunders, C. and Balafoutis, A.T. (2007) A Force Prediction Model for Mouldboard Plough Incorporating the Effects of Soil Characteristics Properties, Plough Geometric Factors and Ploughing Speed. Biosystem Engineering, 97, 117-129.
[6] Bentaher, H., Ibrahim, A., Hamza, E., Hbaieb, M., Kantchev, G., Malley, A. and Arnold, W. (2013) Finite Element Modelling Simulation of Mouldboard Plough Soil Interaction. Soil and Tillage Research, 134, 11-16.
[7] Temesgen, M. Savenije, H.H., Rockstorm, J. and Hoogmad, W.B. (2012) Assessment of Strip Tillage Systems on Maize Production in Semi-Arid Ethiopia. Physics and Chemistry of Earth Parts A/B/C, 47-48, 156-165.
[8] Zadeh, S.R. (2006) Modelling of Energy Requirement by a Narrow Tillage Tool (PhD). University of Saskatchewan, Saskatoon, p. 190.
[9] Mckeys, E. (1985) Soil Cutting Tillage. Elsevier, Amsterdam.
[10] Martin, O., Klaus, D., Christos, V. and Peter, E. (2011) Prediction of Draft Forces in Cohesionless Soil with the Discrete Element Method. Journal of Terramechanics, 48, 347-358.
[11] Oida, A. and Momozu, M. (2002) Simulation of Soil Behavior and Reaction by Machine Part by Means of DEM. Agricultural Engineering International: The CIGR EJournal, IV, 1-7.
[12] Cundall, P.A. and Strack, Q.D.L. (1971) A Discrete Numerical Model for Granular Assemblies. Geotechnique, 29, 47-65.
[13] Owen, D.R.J., Feng, Y.T., De Souza Neto, E.A., et al. (2004) The Modelling of Multi Fracture Solids and Particulate Media. International Journal for Numerical Methods in Engineering, 60, 317-339.
[14] Nezami, E.G., Hashash, Y.M.A., Zhao, D. and Ghaboussi, J. (2007) Simulation of Front end Loader Bucket-Soil Interaction Using Discrete Element Model. International Journal for Numerical and Analytical Methods in Geomechanics, 31, 47-62.
[15] Coetzee, C. and Els, D. (2009) The Numerical Modelling of Excavator Bucket Filling Using DEM. Journal of Terramechanics, 46, 217-227.
[16] Coetzee, C., Els, D. and Dymond, G. (2010) Discrete Element Parameter Calibration and the Modelling of Dragline Bucket Filling. Journal of Terramechanics, 47, 33-44.
[17] Mustafa, U., John, F. and Chris, S. (2014) Three Dimensional Discrete Element Modelling of Tillage: Determination of a Suitable Contact Model and Parameters for a Cohesionless Soil. Biosystem Engineering, 10, 106-117.
[18] Ucgul, M., Fielke, J.M. and Saunders, C. (2015) Defining the Effect of Sweep Tillage Tool Cutting Edge Geometry on Tillage Forces Using 3D Discrete Element Modelling. Information Processing in Agriculture, 2, 130-141.
[19] Raji, A.O. (1999) Discrete Element Modelling of the Deformation of Bulk Agricultural Particles (PhD). University of Newcastle, Newcastle, p. 165.
[20] EDEM (2010) EDEM User Guide. DEM Solutions, Edinburgh.
[21] Saunders, C., Godwin, R.J. and O’Dohgerty, M.J. (2000) Prediction of Soil Forces Acting on Mouldboard Plough. Fourth International Conference on Soil Dynamics, Adelaide.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.