Share This Article:

Frequency Dependence of Optical Conductivity in MgB2 Superconductor

Abstract Full-Text HTML XML Download Download as PDF (Size:402KB) PP. 353-360
DOI: 10.4236/wjcmp.2015.54036    3,287 Downloads   3,639 Views  

ABSTRACT

Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimental results, it is shown that the single-gap isotropic model is insufficient to understand consistently optical behaviors. Also, it is concluded that the two-band model consistently describes the optical behaviors. In the two-gap model, we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shojaei, A. , Moarrefi-Romeileh, M. and Joata-Bayrami, A. (2015) Frequency Dependence of Optical Conductivity in MgB2 Superconductor. World Journal of Condensed Matter Physics, 5, 353-360. doi: 10.4236/wjcmp.2015.54036.

References

[1] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. and Akimitsu, J. (2001) Superconductivity at 39 K in Magnesium Diboride. Nature (London), 410, 63-64.
http://dx.doi.org/10.1038/35065039
[2] Golubov, A.A., Kortus, J., Dolgov, O.V., Jepsen, O., Kong, Y., Andersen, O.K., Gibson, B.J., Ahn, K. and Kremer, R.K. (2002) Specific Heat of MgB2 in a One- and a Two-Band Model from First-Principles Calculations. Journal of Physics: Condensed Matter, 14, 1353.
http://dx.doi.org/10.1088/0953-8984/14/6/320
[3] Liu, A.Y., Mazin, I.I. and Kortus, J. (2001) Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two- Phonon Scattering, and Multiple Gaps. Physical Review Letters, 87, Article ID: 087005.
http://dx.doi.org/10.1103/PhysRevLett.87.087005
[4] Kotegawa, H., Ishida, K., Kitaoka, Y., Muranaka, T. and Akimitsu, J. (2001) Evidence for Strong-Coupling s-Wave Superconductivity in MgB2: B11 NMR Study. Physical Review Letters, 87, Article ID: 127001.
http://dx.doi.org/10.1103/PhysRevLett.87.127001
[5] Mazin, I.I. and Kortus, J. (2002) Phys. Rev. B, 65, Article ID: 180510.
http://dx.doi.org/10.1103/PhysRevB.65.180510
[6] Giubileo, F., Roditchev, D., Sacks, W., Lamy, R., Thanh, D.X., Klein, J., Miraglia, S., Fruchart, D., Marcus, J. and Monod, P. (2001) Interpretation of the de Haas-van Alphen Experiments in MgB2. Physical Review Letters, 87, Article ID: 177008.
http://dx.doi.org/10.1103/PhysRevLett.87.177008
[7] Nuwal, A. and Lal Kakani, S. (2013) Theoretical Study of Specific Heat and Density of States of MgB2 Superconductor in Two Band Models. World Journal of Condensed Matter Physics, 3, 33-42.
http://dx.doi.org/10.4236/wjcmp.2013.31006
[8] Cunnane, D., Zhuang, C., Chen, K., Xi, X.X., Yong, J. and Lemberger, T.R. (2013) Penetration Depth of MgB2 Measured Using Josephson Junctions and SQUIDs. Applied Physics Letters, 102, Article ID: 072603.
http://dx.doi.org/10.1063/1.4793194
[9] Moarrefi-Romeileh, M., Yavari, H., Joata-Bayrami, A.A. and Abolhassani, M.R. (2011) Temperature Dependence of Transmittance and Effective Surface Resistance of MgB2 Film. Physica B: Condensed Matter, 406, 4135-4138.
http://dx.doi.org/10.1016/j.physb.2011.08.011
[10] Manzano, F., Carrington, A., Hussey, N.E., Lee, S., Yamamoto, A. and Tajima, S. (2002) Exponential Temperature Dependence of the Penetration Depth in Single Crystal MgB2. Physical Review Letters, 88, Article ID: 047002.
http://dx.doi.org/10.1103/PhysRevLett.88.047002
[11] Jin, B.B., Klein, N., Kang, W.N., Kim, H.-J., Choi, E.-M. and Lee, S.-I. (2002) Energy Gap, Penetration Depth, and Surface Resistance of MgB2 Thin Films Determined by Microwave Resonator Measurements. Physical Review B, 66, Article ID: 104521.
http://dx.doi.org/10.1103/PhysRevB.66.104521
[12] Pronin, A.V., Pimenov, A., Loidl, A. and Krasnosvobodtsev, S.I. (2001) Optical Conductivity and Penetration Depth in MgB2. Physical Review Letters, 87, Article ID: 097003.
http://dx.doi.org/10.1103/PhysRevLett.87.097003
[13] Golubov, A.A., Brinkman, A., Dolgov, O.V., Kortus, J. and Jepsen, O. (2002) Multiband Model for Penetration Depth in MgB2. Physical Review B, 66, Article ID: 054524.
http://dx.doi.org/10.1103/PhysRevB.66.054524
[14] Brinkman, A., Golubov, A.A., Dolgov, O.V., Kortus, J., Kong, Y., Jepsen, O. and Andersen, O.K. (2002) Multiband Model for Tunneling in MgB2 Junctions. Physical Review B, 65, Article ID: 180517.
http://dx.doi.org/10.1103/PhysRevB.65.180517
[15] Kaindl, R.A., Carnahan, M.A., Orenstein, J. and Chemla, D.S. (2002) Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films. Physical Review Letters, 88, Article ID: 027003.
http://dx.doi.org/10.1103/PhysRevLett.88.027003
[16] Mahan, G.D. (1990) Many-Particle Physics. Second Edition, Plenum Press, New York.
http://dx.doi.org/10.1007/978-1-4613-1469-1
[17] Abrikosov, A.A. (1988) Fundamentals of the Theory of Metals. North-Holland, Amsterdam.
[18] Choi, H.J., Roundy, D., Sun, H., Cohen, M.L. and Louie, S.G. (2002) The Origin of the Anomalous Superconducting Properties of MgB2. Nature, 418, 758-760.
http://dx.doi.org/10.1038/nature00898
[19] Yanagisawa, T. and Shibata, H. (2003) Orbital-Dependent Two-Band Superconductivity in MgB2. Journal of the Physical Society of Japan, 72, 1619-1622.
http://dx.doi.org/10.1143/JPSJ.72.1619
[20] Belashchenko, K.D., Van Schilfgaarde, M. and Antropov, V.P. (2001) Coexistence of Covalent and Metallic Bonding in the Boron Intercalation Superconductor MgB2. Physical Review B, 64, Article ID: 092503.
http://dx.doi.org/10.1103/PhysRevB.64.092503

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.