Share This Article:

Characterization of Clay of the Benin Used in Ruminale Feeding. Complete Determination of the Smectites Contained in These Clays

Abstract Full-Text HTML XML Download Download as PDF (Size:1980KB) PP. 1322-1336
DOI: 10.4236/jep.2015.611115    2,144 Downloads   2,580 Views  

ABSTRACT

In this work, by the use of several physico-chemical complementary methods for the characterization of soil (diffraction of x-rays, chemical analysis, density, cationic exchange capacity, specific sur faces, m?ssbauer, granulometry, etc.), the smectite of the three clayey localities of Benin (Gbédji-Kotovi, Massi-Sèhouè and Zogbodomey) was notably studied. Thus, these three sites principally contain principally smectite, kaolinite and quartz in variable proportion. This smectite is a beidellite. Its chemical formula is proposed. The specific surfaces and the cationic exchange capacity of the samples are determined. For these samples, the fraction lower than 2 μm is practically beidellitic for Gbédji-Kotovi and Massi-Sèhouè (more than 82% of beidellite) and practically kaolinitic (70% of kaolinite) for Zogbodomey. So, used as additive food to ruminant, the clay of Gbédji-Kotovi and Massi-Sèhouè will induce an enteric reduction of methane more than clay of Zogbodomey.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sagbo, E. , Agbahoungbata, M. , Kangbode, W. , Cakpo, A. , Kinlehoume, J. , Mensah, J. and Noack, Y. (2015) Characterization of Clay of the Benin Used in Ruminale Feeding. Complete Determination of the Smectites Contained in These Clays. Journal of Environmental Protection, 6, 1322-1336. doi: 10.4236/jep.2015.611115.

References

[1] Chenoweth, D.P. (1996) Environmental Impact of Methanogenesis. Environmental Monitoring and Assessment, 42, 3-18.
http://dx.doi.org/10.1007/BF00394039
[2] Ouachem, D., Soltane, M. and Kalli, A. (2008) Les pailles de céréales: Profil des fermentations et production de méthane. Sciences & Technologie, 27, 23-28.
[3] Iheta, B., Kirov, M., Tsawlassou, G. and Houessou, A. (1983) Rapport sur les recherchesgéologiquesd’ argilesdans lazone du bassincôtier: SecteurGbédji-Kotovi, Massi, Zogbodomè.
[4] Agbahoungbata, M.Y. (2012) Caractérisation et valorisation de quelquesargiles du Bénin: Application à l’adsorption du cuivredansl’eau. Mémoire de DEA. Universitéd’ Abomey-Calavi.
[5] Slansky, M. (1962) Contribution à l’étudegéologique du bassinsédimentairecôtier du Dahomeyet du Togo
[6] IRB (1989) Etude de la cartographieengéologiqueet prospection de reconnaissance au Sud du 9èmeparallèle.
[7] Caillere, S. and Henin, S. (1963) Minéralogie des argiles. Masson etCie.
[8] Holtzapffef, T. (1985) Les Minérauxargileux: Préparation, analyse diffractométrique et détermination, Société Géologique du Nord, 12.
[9] Aubert, G. (1978) Méthodesd’Analyses des Sols, Centre régional de Documentation Pédagogique de Marseille (191) 2ème trimester.
[10] Künding, W.A. (1969) Least Square Fit Program. Nuclear Instruments and Methods, 75, 336-340.
http://dx.doi.org/10.1016/0029-554X(69)90624-7
[11] Satte, Y. (2010) Assemblages minéralogiques argileux et circulation thermohaline en atlantique Nord pendant les stades isotopiques 27 à 31. Thèse de doctorat de l’université du Québec à Montréal, Montréal.
[12] Tremblay, M. (1986) Etude de l’hétérogénéité du gisement de kaolin de Chateau-Richeret de son incidence sur les propriétés des mousses d’argile. Mémoire de maitriseen sciences de la terre, Université du Québec, Ville de Québec, 163 p.
[13] Hofmann, U. and Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonite durch Erhitzung. Zeitschrift für anorganische Chemie, 262, 95-99.
http://dx.doi.org/10.1002/zaac.19502620114
[14] Grenne-Kelly, R. (1957) The Montmorillonite Minerals. In: Mackenzie, R.C., The Differential Thermal Investigation of Clays, Chap. V, Mineralogical Society, London, 140-164.
[15] Thorez, J. (1998) Différenciation minéralogique et génétique par DRX des smectitespost-saturées au Li et K. Applications ensédimentologie, paléopédologie, paléogéographie, paléoclimatologie, stratigraphie et enargilostratigraphiesé-quentielle, Vol. 30, ASF Publications, Paris, 106-107.
[16] Thiry, M. (1991) Les argilesplastiques du bassin de Paris. Groupe Français des Argiles, Livret guide, France.
[17] Robert, M. and Tessier, D. (1974) Annales Agronomiques, 26, 859.
[18] Thorez, J. (2002) Cation-Saturated Swelling Physils: An XRD Revisitation. Proceedings of the 1st Latin-American Clay Conference, Vol. 1, Funchal, Invited Lecture, Clay Geology Laboratory, Liège University, Liège, 71-85.
[19] Sorgho, B., Paré, S., Guel, B., Zerbo, L., Karfa, T. and Persson, I. (2011) Etude d’uneargile locale du Burkina Faso à des fins de décontaminationen Cu2+, Pb2+ et Cr3+. Journal de la Société Ouest-Africaine de Chimie, 31, 49-59.
[20] M’leyeh, A., Srasra, E. and Cheref, A. (2002) Adsorption of Heavy Metals by Natural Clays of Borj Chekir, SW of Tunis. Proceedings of International Symposium on Environmental Pollution Control and Waste Management, (EPCOWM’ 2002), Tunis, 7-10 January 2002, 533-546.
[21] Morel, R. (1996) Les sols cultivés. Lavoisier, Paris.
[22] Borggaard, O.K. (1979) Selective Extraction of Amorphous Iron Oxides by EDTA from a Danish Sandy Loam. Journal of Soil Science, 30, 727-734.
http://dx.doi.org/10.1111/j.1365-2389.1979.tb01022.x
[23] Sei, J. (1998) Etude de matériaux de dimensionnalitéréduite: Relation structure-propriétédans des kaolinites naturelles de Côte d’Ivoire. Thèse, Université de Montpellier, Montpellier.
[24] Kloprogge, J.T., Komarneni, S., Yanagisawa, K., Fry, R. and Frost, R.L. (1999) Infrared Emission Spectroscopic Study of the Dehydroxylation via Surface Silanol Groups of Synthetic and Natural Beidellite. Journal of Colloid and Interface Science, 212, 562-569.
http://dx.doi.org/10.1006/jcis.1998.6082
[25] Russell, J.D. (1965) Infrared Study of the Reactions of Ammonia with Montmorillonite and Saponite. Transactions of the Faraday Society, 61, 2284-2294.
http://dx.doi.org/10.1039/tf9656102284
[26] Farmer, V.C. (Ed.) (1974) The Infrared Spectra of Minerals. Mineralogical Society, London, 331.
http://dx.doi.org/10.1180/mono-4.15
[27] Russell, J.D. and Fraser, A.R. (1994) Infrared Methods. In: Wilson, M.J., Ed., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, Chapman & Hall, London, 11-67.
http://dx.doi.org/10.1007/978-94-011-0727-3_2
[28] Velde, B. and Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Springer, Heidelberg, 406 p.
http://dx.doi.org/10.1007/978-3-540-75634-7
[29] Liétard, O. (1997) Contribution à l’étude des proprieties physicochimiques, cristallographiques et morphologiques des kaolins. PhD Dissertation, University of Nancy, Nancy.
[30] Njopwouo, D. (1984) Minéralogie et physic-chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrene et dans le renforcement du caoutchouc naturel. Thèse de Doctoratd’Etat, Université de Yaoundé, Yaoundé, 300 p.
[31] Soro, N.S. (2003) Influence des ions fer sur les transformations thermiques de la kaolinite. Thèse de Doctorat de l’Université de Limoges, Limoges.
[32] Goodman, B.A. and Lewis, D.G. (1981) Mössabauer Spectra of Aluminous Geothites (α-FeOOH). Journal of Soil Science, 32, 351-363.
http://dx.doi.org/10.1111/j.1365-2389.1981.tb01711.x
[33] Önal, M. (2006) Determination of Chemical Formula of a Smectite. Department of Chemistry, Faculty of Science, Ankara University, TURKEY Series B, Vol. 52, 1-6.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.