Share This Article:

Synthesis of ZnS, CdS and Core-Shell Mixed CdS/ZnS, ZnS/CdS Nanocrystals in Tapioca Starch Matrix

Abstract Full-Text HTML XML Download Download as PDF (Size:4644KB) PP. 30-38
DOI: 10.4236/msce.2015.311005    3,299 Downloads   3,859 Views   Citations

ABSTRACT

Gel of tapioca starch (TS) is a suitable matrix for the formation of ZnS, CdS and core-shell ZnS/CdS as well as CdS/ZnS quantum dots (QDs). These QDs reside in the matrix as non-agglomerating 3 - 10 nm nanocrystals. It is demonstrated that amylopectin is responsible for the QDs formation rather than amylose. Combination of ZnS with CdS in the core-shell QDs results in the increase in the intensity of emission without any shift of its wavelength.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Khachatryan, K. , Khachatryan, G. and Fiedorowicz, M. (2015) Synthesis of ZnS, CdS and Core-Shell Mixed CdS/ZnS, ZnS/CdS Nanocrystals in Tapioca Starch Matrix. Journal of Materials Science and Chemical Engineering, 3, 30-38. doi: 10.4236/msce.2015.311005.

References

[1] Reiss, P., Protière, M. and Li, L. (2009) Core/Shell Semiconductor Nanocrystals. Small, 5, 154-168.
http://dx.doi.org/10.1002/smll.200800841
[2] van Driel, A.F., Allan, G., Delerue, C., Lodahl, P., Vos, W.L. and Vanmaekelbergh, D. (2005) Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States. Physical Review Letters, 95, 236804-236808.
http://dx.doi.org/10.1103/PhysRevLett.95.236804
[3] Wang, Y.X., Fan, H.G., Wang, D.D. and Lang, J.H. (2008) Low Temperature Synthesis and Characterization of ZnO Quantum Dots. Journal of Alloys and Compounds, 463, 92-95.
http://dx.doi.org/10.1016/j.jallcom.2007.12.006
[4] Murray, C.B., Kagan, C.R. and Bawendi, M.G. (2000) Syntesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annual Review of Materials Science, 30, 545-610.
http://dx.doi.org/10.1146/annurev.matsci.30.1.545
[5] Qi, L., Ma, J., Cheng, H. and Zhao, Z. (1996) Synthesis and Characterization of Mixed CdS/ZnS Nanoparticles in Reverse Micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 195-202.
http://dx.doi.org/10.1016/0927-7757(96)03545-5
[6] Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F. and Bawendi, M.G. (1997) (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B, 101, 9463-9475.
http://dx.doi.org/10.1021/jp971091y
[7] Peng, X., Schlamp, M.C., Kadavanich, A.V. and Alivisatos, A.P. (1997) Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society, 119, 7019-7029.
http://dx.doi.org/10.1021/ja970754m
[8] Loukanov, A.R., Dushkin, C.D., Papazova, K.I., Kirov, A.V., Abrashev, M.V. and Adachi, E. (2004) Photoluminescence Depending on the ZnS Shell Thickness of CdS/ZnS Core-Shell Semiconductor Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 245, 9-14.
http://dx.doi.org/10.1016/j.colsurfa.2004.06.016
[9] Itoh, J. and Osamura, R.Y. (2007) Quantum Dots for Multicolor Tumor Pathology and Multispectral Imaging. Methods in Molecular Biology, 374, 29-42.
[10] Gao, X., Chung, L.W. and Nie, S. (2007) Quantum Dots for in Vivo Molecular and Cellular Imaging. Methods in Molecular Biology, 374, 135-145.
[11] Frangioni, J.V., Kim, S.-W., Ohnishi, S., Kim, S. and Bawendi, M.G. (2007) Sentinel Lymph Node Mapping with Type-II Quantum Dots. Methods in Molecular Biology, 374, 147-159.
[12] Manzoor, K., Johny, S., Thomas, D., Setua, S., Menon, D. and Nair, S. (2009) Bio-Conjugated Luminescent Quantum Dots of Doped ZnS: A Cyto-Friendly System for Targeted Cancer Imaging. Nanotechnology, 20, Article ID: 065102.
http://dx.doi.org/10.1088/0957-4484/20/6/065102
[13] Ornberg, R.L. and Liu, H. (2007) Immunofluorescent Labeling of Proteins in Cultured Cells with Quantum Dot Secondary Antibody Conjugates. Methods in Molecular Biology, 374, 3-10.
[14] Lidke, D.S., Nagy, P., Jovin, T.M. and Arndt-Jovin, D.J. (2007) Biotin-Ligand Complexes with Streptavidin Quantum Dots for in Vivo Cell Labeling of Membrane Receptors. Methods in Molecular Biology, 374, 69-79.
[15] Jaiswal, J.K. and Simon, S.M. (2007) Optical Monitoring of Single Cells Using Quantum Dots. Methods in Molecular Biology, 374, 93-104.
[16] Deerinck, T.J., Giepmans, B.N., Smarr, B.L., Martone, M.E. and Ellisman, M.E. (2007) Light and Electron Microscopic Localization of Multiple Proteins Using Quantum Dots. Methods in Molecular Biology, 374, 43-53.
[17] Bozuyigues, C., Levi, S., Triller, A. and Dahan, M. (2007) Single Quantum Dot Tracking of Membrane Receptors. Methods in Molecular Biology, 374, 81-91.
[18] Gu, W., Pellegrino, T., Park, W.J., Boudreau, R., Gros, M.A., Aliviasatos, A.P. and Larabell, C.A. (2007) Measuring Cell Motility Using Quantum Dot Probes. Methods in Molecular Biology, 374, 125-131.
[19] Geho, D.H., Killian, J.K., Nandi, A., Pastor, J., Gurnani, P. and Rosenblatt, K.P. (2007) Fluorescence-Based Analysis of Cellular Protein Lysate Arrays Using Quantum Dots. Methods in Molecular Biology, 374, 229-237.
[20] Freeman, R. and Willner, I. (2009) NAD+/NADH-Sensitive Quantum Dots: Applications to Probe NAD+-Dependent Enzymes and to Sense the RDX Explosive. Nano Letters, 9, 322-326.
http://dx.doi.org/10.1021/nl8030532
[21] Goldman, E.R., Uyeda, H.T., Hayhurst, A. and Mattoussi, H. (2007) Luminescent Biocompatible Quantum Dots. Methods in Molecular Biology, 374, 207-227.
[22] Zhang, B.B., Liang, X.F., Hao, L.J., Cheng, J., Gong, X.Q., Liu, X.H., Ma, G.P. and Chang, J. (2009) Quantum Dots/ Particle-Based Immunofluorescence Assay: Synthesis, Characterization and Application. Journal of Photochemistry and Photobiology B: Biology, 94, 45-50.
http://dx.doi.org/10.1016/j.jphotobiol.2008.09.008
[23] Vu, T.Q., Maddipati, R., Blute, T.A., Nehilla, B.J., Nusblat, L. and Desai, T.A. (2005) Peptide-Conjugated Quantum Dots Activate Neuronal Receptors and Initiate Downstream Signaling of Neurite Growth. Nano Letters, 5, 603-607.
http://dx.doi.org/10.1021/nl047977c
[24] Ornberg, R.L., Harper, T.F. and Liu, H. (2005) Western Blot Analysis with Quantum Dot Fluorescence Technology: A Sensitive and Quantitative Method for Multiplexed Proteomics. Nature Methods, 2, 79-81.
http://dx.doi.org/10.1038/nmeth0105-79
[25] Sarkar, A., Robertson, R.B. and Fernandez, J.M. (2004) Simultaneous Atomic Force Microscope and Fluorescence Measurements of Protein Unfolding Using a Calibrated Evanescent Wave. Proceedings of the National Academy of Sciences of the United States of America, 101, 12882-12886.
http://dx.doi.org/10.1073/pnas.0403534101
[26] Pinaud, F., King, D., Moore, H.P. and Weiss, S. (2004) Bioactivation and Cell Targeting of Semiconductor CdSe/ ZnSnanocrystals with Phytochelatin-Related Peptides. Journal of the American Chemical Society, 126, 6115-6123.
http://dx.doi.org/10.1021/ja031691c
[27] Gokarna, A., Lee, S.K., Hwang, J.S., Cho, Y.H., Lim, Y.T., Chung, B.H. and Lee, M. (2008) Fabrication of CdSe/ZnS Quantum-Dot-Conjugated Protein Microarray and Nanoarrays. Journal of the Korean Physical Society, 3, 3047-3050.
http://dx.doi.org/10.3938/jkps.53.3047
[28] Bardelang, D., Zaman, M.B., Moudrakovski, I.L., Pawsey, S., Margeson, J.C., Wang, D.S., Wu, X.H., Ripmeester, J.A., Ratcliffe, C.I. and Yu, K. (2008) Interfacing Supramolecular Gels and Quantum Dots with Ultrasound: Smart Photoluminescent Dipeptide Gels. Advanced Materials, 20, 4517-4520.
http://dx.doi.org/10.1002/adma.200801812
[29] Rebilly, J.N., Gardner, P.W., Darling, G.R., Bacsa, J. and Rosseinsky, M.J. (2008) Chiral II-VI Semiconductor Nanostructure Superlattices Based on an Amino Acid Ligand. Inorganic Chemistry, 47, 9390-9399.
http://dx.doi.org/10.1021/ic801097w
[30] Sutherland, A.J. (2002) Quantum Dots as Luminescent Probes in Biological Systems. Current Opinion in Solid State & Materials Science, 6, 365-370.
http://dx.doi.org/10.1016/S1359-0286(02)00081-5
[31] Li, Z., Du, Y., Zhang, Z. and Pang, D. (2003) Preparation and Characterization of CdS Quantum Dots Chitosan Biocomposite. Reactive and Functional Polymers, 55, 35-43.
http://dx.doi.org/10.1016/S1381-5148(02)00197-9
[32] Sondi, I., Siiman, O. and Matijevic, E. (2004) Synthesis of CdSe Nanoparticles in the Presence of Aminodextran as Stabilizing and Capping Agent. Journal of Colloid and Interface Science, 275, 503-507.
http://dx.doi.org/10.1016/j.jcis.2004.02.005
[33] Tan, W.B. and Zhang, Y. (2005) Surface Modification of Gold and Quantum Dot Nanoparticles with Chitosan for Bioapplications. Journal of Biomedical Materials Research Part A, 75, 56-62.
http://dx.doi.org/10.1002/jbm.a.30410
[34] Wang, X.H., Du, Y.M., Ding, S., Fan, L.H., Shi, X.W., Wang, Q.Q. and Xiong, G.G. (2005) Large Two-Photon Absorbance of Chitosan-ZnS Quantum Dots Nanocomposite Film. Physica E: Low-Dimensional Systems and Nanostructures, 30, 96-100.
http://dx.doi.org/10.1016/j.physe.2005.07.017
[35] Nie, Q., Tan, W.B. and Zhang, Y. (2006) Synthesis and Characterization of Monodisperse Chitosan Nanoparticles with Embedded Quantum Dots. Nanotechnology, 17, 140-144.
http://dx.doi.org/10.1088/0957-4484/17/1/022
[36] Sun, X.L., Cui, W., Haller, C. and Chaikof, E.L. (2004) Site-Specific Multivalent Carbohydrate-Labeled Quantum Dots and Magnetic Beads. ChemBioChem, 5, 1593-1596.
http://dx.doi.org/10.1002/cbic.200400137
[37] Osaki, F., Kanamori, T., Sando, S., Sera, T. and Aoyama, Y. (2004) A Quantum Dot Conjugated Sugar Ball and Its Cellular Uptake. On the Size Effects of Endocytosis in the Subviral Region. Journal of the American Chemical Society, 126, 6520-6521.
http://dx.doi.org/10.1021/ja048792a
[38] Dirar, H.M.E. (2008) Strong Band-Edge Emission from ZnS Quantum Dots Stabilized by Gum Arabic. Chinese Physics Letters, 25, 4480-4481.
http://dx.doi.org/10.1088/0256-307X/25/12/083
[39] Cheng, Z.Y., Liu, S.H., Beines, P.W., Ding, N., Jakubowicz, P. and Knoll, W. (2008) Rapid and Highly Efficient Preparation of Water-Soluble Luminescent Quantum Dots via Encapsulation by Thermo- and Redox-Responsive Hydrogels. Chemistry of Materials, 20, 7215-7219.
http://dx.doi.org/10.1021/cm800733y
[40] Wang, C.H., Hsu, Y.S. and Peng, C.A. (2008) Quantum Dots Encapsulated with Amphiphilic Alginate as Bioprobe for Fast Screening Anti-Dengue Virus Agents. Biosensors and Bioelectronics, 24, 1012-1019.
http://dx.doi.org/10.1016/j.bios.2008.08.009
[41] Li, H.B. and Han, C.P. (2008) Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water. Chemistry of Materials, 20, 6053-6059.
http://dx.doi.org/10.1021/cm8009176
[42] Khachatryan, G., Khachatryan, K., Stobinski, L., Tomasik, P., Fiedorowicz, M. and Lin, H.M. (2009) CdS and ZnS Quantum Dots Embedded in Hyaluronic Acid Films. Journal of Alloys and Compounds, 481, 402-406.
http://dx.doi.org/10.1016/j.jallcom.2009.03.011
[43] Khachatryan, K., Khachatryan, G., Fiedorowicz, M. and Tomasik, P. (2014) Formation and Properties of Selected Quantum Dots in Maize Amylopectin Matrix. Journal of Alloys and Compounds, 607, 39-43.
http://dx.doi.org/10.1016/j.jallcom.2014.04.082
[44] Lii, C.Y., Tomasik, P., Hung, W.L., Yen, M.T. and Lai, V.M.F. (2003) Granular Starches as Dietary Food and Microcapsules. International Journal of Food Science & Technology, 38, 677-685.
http://dx.doi.org/10.1046/j.1365-2621.2003.00685.x
[45] Ciesielski, W. and Tomasik, P. (2004) Metal Complexes of Amylose and Amylopectins and Their Thermolysis. Journal of Inorganic Biochemistry, 98, 2039-2051.
http://dx.doi.org/10.1016/j.jinorgbio.2004.09.010

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.