Share This Article:

Numerical Simulation of Microstructural Evolution via Phase-Field Model Coupled to the Solutal Interaction Mechanism

Abstract Full-Text HTML XML Download Download as PDF (Size:2978KB) PP. 907-923
DOI: 10.4236/msa.2015.610092    3,798 Downloads   4,406 Views   Citations

ABSTRACT

A phase-field model coupled to the multiphase/multiscale model is used to simulate the microstructural morphology and predict the CET during solidification. The considered mechanism for the CET is based on interactions of solute between the equiaxed grains and the advancing columnar front. The results for the solute concentration in liquid region, dendrite tip velocity, volume fraction of the liquid and solid are presented and discussed. The phase-field model is used to simulate the dendritic morphology of an alloy directionally solidified, by imposing a constant temperature gradient. The simulation of the equiaxed grains growth requires a further important element, the growth of grains with different crystallographic orientations. The grain orientations are generated randomly for each nucleus introduced in computational domain. Finally, the coupling results between the multiphase/multiscale model and phase-field are presented and discussed. For higher nuclei density present in the melt, a shorter distance between mold wall and the equiaxed zone in the solidification process can be observed. A solute concentration boundary layer exists in the liquid along the columnar grain contour. The concentrations in the solid indicate the presence of a microsegregation pattern. The simulated results show that the solidification features are consistent with those observed based on the metallographic examinations of cast microstructures reported in the literature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ferreira, A. , Tomaskewski, I. , Paradela, K. , Silva, D. and Sales, R. (2015) Numerical Simulation of Microstructural Evolution via Phase-Field Model Coupled to the Solutal Interaction Mechanism. Materials Sciences and Applications, 6, 907-923. doi: 10.4236/msa.2015.610092.

References

[1] Salvino, I.M., Olivé, L. and Ferreira, A.F. (2012) Simulation of Microsegregation in Multicomponent Alloys during Solidification. Steel Research International, 83, 723-732.
http://dx.doi.org/10.1002/srin.201200003
[2] Kurz, W., Bezençon, C. and Gäumann, M. (2001) Columnar to Equiaxed Transition in Solidification Processing. Science and Technology of Advanced Materials, 2, 185-191.
http://dx.doi.org/10.1016/S1468-6996(01)00047-X
[3] Martorano, M.A., Beckermann, C. and Gandin, Ch.-A. (2003) A Solutal Interaction Mechanism for the Columnar- to-Equiaxed Transition in Alloy Solidification. Metallurgical Materials Transactions A, 34A, 1657-1674.
http://dx.doi.org/10.1007/s11661-003-0311-x
[4] Winegard, W.C. and Chalmers, B. (1954) Supercooling and Dendritic Freezing in Alloys. Transactions of American Society for Metals, 46, 1214-1223.
[5] Spittle, J.A. and Brown, S.G.R. (1989) A Computer Simulation of the Influence of Processing Conditions on As-Cast Grain Structures. Journal of Materials Science, 24, 1777-1781.
http://dx.doi.org/10.1007/BF01105705
[6] Zhu, P. and Smith, R.W. (1992) Dynamic Simulation of Crystal Growth by Monte Carlo. Method-I. Model Description and Kinetics. Acta Metallurgica et Materialia, 40, 683-692.
http://dx.doi.org/10.1016/0956-7151(92)90009-4
[7] Gandin, Ch.-A. and Rappaz, M. (1994) Coupled Finite Element-Cellular Automaton Model for the Prediction Grain Structures in Solidification Process. Acta Materialia, 42, 2233-2246.
http://dx.doi.org/10.1016/0956-7151(94)90302-6
[8] Hunt, J.D. (1984) Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Materials Science Engineering, 65, 75-83.
http://dx.doi.org/10.1016/0025-5416(84)90201-5
[9] Flood, S.C. and Hunt, J.D. (1987) Columnar and Equiaxed Growth: I. A Model of a Columnar Front with a Temperature Dependent Velocity. Journal of Crystal Growth, 82, 543-551.
http://dx.doi.org/10.1016/0022-0248(87)90346-0
[10] Flood, S.C. and Hunt, J.D. (1987) Columnar and Equiaxed Growth: II. Equiaxed Growth Ahead of a Columnar Front. Journal of Crystal Growth, 82, 552-560.
http://dx.doi.org/10.1016/0022-0248(87)90347-2
[11] Gäumann, M., Bezençon, C., Canalis, P. and Kurz, W. (2001) Single-Crystal Laser Deposition of Superalloys: Processing-Microstructure Maps. Acta Materialia, 49, 1051-1062.
http://dx.doi.org/10.1016/S1359-6454(00)00367-0
[12] Kurz, W., Bezençon, C. and Gäumann, M. (2001) Columnar to Equiaxed Transition in Solidification Processing. Science and Technology of Advanced Materials, 2, 185-191.
http://dx.doi.org/10.1016/S1468-6996(01)00047-X
[13] Wang, C.Y. and Beckermann, C. (1994) Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 25A, 1081- 1093.
http://dx.doi.org/10.1007/BF02652282
[14] Lipton, J., Glicksman, M.E. and Kurz, W. (1984) Dendritic Growth into Undercooled Alloy Metals. Materials Science Engineering, 65, 57-63.
http://dx.doi.org/10.1016/0025-5416(84)90199-X
[15] Ziv, I. and Weinberg, F. (1989) The Columnar-to-Equiaxed Transition in Al 3pct Cu. Metallurgical Transactions B: Process Metallurgy, 20B, 731-734.
http://dx.doi.org/10.1007/BF02655931
[16] Ferreira, A.F., Silva, A.J. and Castro, J.A. (2006) Simulation of the Solidification of Pure Nickel via the Phase-Field Method. Materials Research, 9, 349-356.
http://dx.doi.org/10.1590/S1516-14392006000400002
[17] Ferreira, A.F., Ferreira, L.O. and Assis, A.C. (2011) Numerical Simulation of the Solidification of Pure Melt by a Phase-Field Model Using an Adaptive Computation Domain. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 125-130.
http://dx.doi.org/10.1590/S1678-58782011000200002
[18] Ferreira, A.F. and Castro, J.A. (2014) Phase-Field Simulations of Dendritic Crystal Growth with Focus on the Computational Efficiency. Advanced Materials Research, 1025-1026, 745-748.
http://dx.doi.org/10.4028/www.scientific.net/AMR.1025-1026.745
[19] Ferreira, A.F. and Ferreira, L.O. (2009) Microsegregation in Fe-C-P Ternary Alloys Using a Phase-Field Model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 31, 173-180.
http://dx.doi.org/10.1590/S1678-58782009000300002
[20] Salvino, I.M., Jácome, P.A.D., Ferreira, A.F. and Ferreira, I.L. (2012) An Analysis of the Physical Properties of Multicomponent Alloy on the Simulation Solidification by Phase-Field Model. Materials Science Forum, 730-732, 703- 708.
http://dx.doi.org/10.4028/www.scientific.net/MSF.730-732.703
[21] Ferreira, A.F., Castro, J.A. and Ferreira, I.L. (2014) 2D Phase-Field Simulation of the Directional Solidification Process. Applied Mechanics and Materials, 704, 17-21.
http://dx.doi.org/10.4028/www.scientific.net/AMM.704.17
[22] Ferreira, A.F., Melo, E.G. and Ferreira, L.O. (2014) Prediction of Secondary-Dendrite Arm Spacing for Binary Alloys by Means of a Phase-Field Model. Steel Research International, 85, 58-64.
[23] Caginalp, G. and Fife, P. (1986) Phase Field Methods for Interfacial Boundaries Fife. Physical Review B: Condensed Matter and Materials Physics, 33, 7792-7794.
http://dx.doi.org/10.1103/PhysRevB.33.7792
[24] Gandin, C.-A. (2000) From Constrained to Unconstrained Growth during Directional Solidification. Acta Materialia, 48, 2483-501.
http://dx.doi.org/10.1016/S1359-6454(00)00070-7
[25] Ode, M. and Suzuki, T. (2002) Numerical Simulation of Initial Microstructure Evolution Fe-C Alloys Using a Phase- Field Model. ISIJ International, 42, 368-374.
http://dx.doi.org/10.2355/isijinternational.42.368
[26] Kim, S.G., Kim, W.T. and Suzuki, T. (1998) Interfacial Compositions of Solid and Liquid in a Phase-Field Model with Finite Interface Thickness for Isothermal Solidification in Binary Alloys. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 58, 3316-3323.
http://dx.doi.org/10.1103/PhysRevE.58.3316
[27] Liu, M.X., Wang, K., Xia, D. and Jiang, T. (2014) Phase Field Simulation of Al-Si Binary Dendritic Growth and Micro-Segregation Patterns under Convection. Journal of Alloys and Compounds, 589, 431-435.
http://dx.doi.org/10.1016/j.jallcom.2013.11.108
[28] McCartney, D.G. (1989) Grain Refining of Aluminium and Its Alloys Using Inoculants. International Materials Reviews, 34, 247-260.
http://dx.doi.org/10.1179/imr.1989.34.1.247
[29] Greer, A.L., Bunn, A.M., Tronche, A., Evans, P.V. and Bristow, D.J. (2000) Modelling of Inoculation of Metallic Melts: Application to Grain Refinement of Aluminium by Al-Ti-B. Acta Materialia, 48, 2823-2835.
http://dx.doi.org/10.1016/S1359-6454(00)00094-X
[30] Kurz, W., Bezençon, C. and Gäumann, M. (2001) Columnar to Equiaxed Transition in Solidification Processing. Science and Technology of Advanced Materials, 2, 185-191.
http://dx.doi.org/10.1016/S1468-6996(01)00047-X
[31] Mirihanage, W.U., Dai, H., Dong, H. and Browne D.J. (2013) Computational Modeling of Columnar to Equiaxed Transition in Alloy Solidification. Advanced Engineering Materials, 15, 216-229.
http://dx.doi.org/10.1002/adem.201200220
[32] Canté, M.V., Cruz, K.S., Spinelli, J.E., Cheung, N. and Garcia, A. (2007) Experimental Analysis of the Columnar-to- Equiaxed Transition in Directionally Solidified Al-Ni and Al-Sn Alloys. Materials Letters, 61, 2135-2138.
http://dx.doi.org/10.1016/j.matlet.2006.08.032
[33] Spinelli, J.E., Ferreira, I.L. and Garcia, A. (2004) Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys. Journal of Alloys and Compounds, 384, 217-226.
http://dx.doi.org/10.1016/j.jallcom.2004.04.098
[34] Ares, A.E., Gueijman, S.F. and Schvezov, C.E. (2010) An Experimental Investigation of the Columnar-to-Equiaxed Grain Transition in Aluminum-Copper Hypoeutectic and Eutectic Alloys. Journal of Crystal Growth, 312, 2154-2170.
http://dx.doi.org/10.1016/j.jcrysgro.2010.04.040
[35] Loginova, I., Amberg, G. and Agren, J. (2001) Phase-Field Simulations of Non-Isothermal Binary Alloy Solidification. Acta Materialia, 49, 573-581.
http://dx.doi.org/10.1016/S1359-6454(00)00360-8

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.