Share This Article:

Polar Derivative Versions of Polynomial Inequalities

Abstract Full-Text HTML XML Download Download as PDF (Size:346KB) PP. 745-755
DOI: 10.4236/apm.2015.512068    1,439 Downloads   1,750 Views  
Author(s)    Leave a comment

ABSTRACT

Let be a polynomial of degree n and for a complex number , let  denote the polar derivative of the polynomial  with respect to . In this paper, first we extend as well as generalize the result proved by Dewan and Mir [Inter. Jour. Math. and Math. Sci., 16 (2005), 2641-2645] to polar derivative. Besides, another result due to Dewan et al. [J. Math. Anal. Appl. 269 (2002), 489-499] is also extended to polar derivative.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chanam, B. (2015) Polar Derivative Versions of Polynomial Inequalities. Advances in Pure Mathematics, 5, 745-755. doi: 10.4236/apm.2015.512068.

References

[1] Bernstein, S. (1926) Lecons Sur Les Propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réele, Paris.
[2] Lax, P.D. (1944) Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial. Bulletin of the American Mathematical Society, 50, 509-513.
http://dx.doi.org/10.1090/S0002-9904-1944-08177-9
[3] Malik, M.A. (1969) On the Derivative of a Polynomial. Journal of the London Mathematical Society, 1, 57-60.
http://dx.doi.org/10.1112/jlms/s2-1.1.57
[4] Bidkham, M. and Dewan, K.K. (1992) Inequalities for a Polynomial and Its Derivative. Journal of Mathematical Analysis and Applications, 166, 319-324.
http://dx.doi.org/10.1016/0022-247X(92)90298-R
[5] Dewan, K.K. and Mir, A. (2005) On the Maximum Modulus of a Polynomial and Its Derivatives. International Journal of Mathematics and Mathematical Sciences, 16, 2641-2645.
http://dx.doi.org/10.1155/IJMMS.2005.2641
[6] Aziz (1983) Inequalities for the Derivatives of a Polynomial. Proceedings of the American Mathematical Society, 89, 259-266.
http://dx.doi.org/10.1090/S0002-9939-1983-0712634-5
[7] Turán, P. (1939) über die ableitung von polynomen. Compositio Mathematica, 7, 89-95.
[8] Govil, N.K. (1973) On the Derivative of Polynomial. Proceedings of the American Mathematical Society, 41, 543-546.
http://dx.doi.org/10.1090/S0002-9939-1973-0325932-8
[9] Dewan, K.K., Kaur, J. and Mir, A. (2002) Inequalities for the Derivative of a Polynomial. Journal of Mathematical Analysis and Applications, 269, 489-499.
http://dx.doi.org/10.1016/S0022-247X(02)00030-6
[10] Aziz, A. and Rather, N.A. (1998) A Refinement of a Theorem of Paul Turán Concerning Polynomials. Mathematical Inequalities & Applications, 1, 231-238.
http://dx.doi.org/10.7153/mia-01-21
[11] Rather, N.A. (1998) Extremal Properties and Location of the Zeros of Polynomials. Ph.D. Thesis, University of Kashmir, Srinagar.
[12] Govil, N.K., Rahman, Q.I. and Schmeisser, G. (1979) On the Derivative of a Polynomial. Illinois Journal of Mathematics, 23, 319-329.
[13] Jain, V.K. (1994) Converse of an Extremal Problem in Polynomials II. Jourmal of the Indian Mathematical Society, 60, 41-47.
[14] Qazi, M.A. (1992) On the Maximum Modulus of Polynomials. Proceedings of the American Mathematical Society, 115, 337-343.
http://dx.doi.org/10.1090/S0002-9939-1992-1113648-1
[15] Dewan, K.K. and Kaur, J. (1994) On the Maximum Modulus of Polynomials. Journal of Mathematical Analysis and Applications, 181, 493-497.
http://dx.doi.org/10.1006/jmaa.1994.1038

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.