Share This Article:

Systematic Approaches of UWB Low-Power CMOS LNA with Body Biased Technique

Abstract Full-Text HTML XML Download Download as PDF (Size:4835KB) PP. 61-77
DOI: 10.4236/wet.2015.63007    4,366 Downloads   5,035 Views   Citations

ABSTRACT

This paper presents research on a low power CMOS UWB LNA based on a cascoded common source and current-reused topology. A systematic approach for the design procedure from narrow band to UWB is developed and discussed in detail. The power reduction can be achieved by using body biased technique and current-reused topology. The optimum width of the major transistor device M1 is determined by the power-constraint noise optimization with inner parasitic capacitance between the gate and source terminal. The derivation of the signal amplification S21 by high frequency small signal model is displayed in the paper. The optimum design of the complete circuit was studied in a step by step analysis. The measurements results show that the proposed circuit has superior S11, gain, noise figure, and power consumption. From the measured results, S11 is lower than -12 dB, S22 is lower than -10 dB and forward gain S21 has an average value with 12 dB. The noise figure is from 4 to 5.7 dB within the whole band. The total power consumption of the proposed circuit including the output buffer is 4.6 mW with a supply voltage of 1 V. This work is implemented in a standard TSMC 0.18 μm CMOS process technology.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hsu, M. , Wu, K. and Chiu, W. (2015) Systematic Approaches of UWB Low-Power CMOS LNA with Body Biased Technique. Wireless Engineering and Technology, 6, 61-77. doi: 10.4236/wet.2015.63007.

References

[1] Siwiak, K. and McKeown, D. (2004) Ultra-Wideband Radio Technology. Wiley, Hoboken.
[2] Aiello, G.R. and Rogerson, G.D. (2003) Ultra-Wideband Wireless Systems. IEEE Microwave Magazine, 4, 36-47. http://dx.doi.org/10.1109/MMW.2003.1201597
[3] Lu, Y., Yeo, K.S., Cabuk, A., Ado, M. and Lu, Z. (2006) A Novel CMOS Low-Noise Amplifier Design for 3.1 to 10.6-GHz Ultra-Wide-Band Wireless Receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 1683-1692.
[4] Liu, R.-C., Lin, C.-S., Deng, K.-L. and Wang, H. (2005) A 0.5-14 GHz 10.6 dB CMOS Cascade Distributed Amplifier. 2003 Symposium on VLSI Circuits, Digest of Technical Papers, Kyoto, 12-14 June 2003, 78-81.
[5] Zhang, F. and Kinget, P.R. (2006) Low-Power Programmable Gain CMOS Distributed LNA. IEEE Journal of Solid-State Circuits, 41, 1333-1343. http://dx.doi.org/10.1109/JSSC.2006.874283
[6] Yu, Y.H., Chen, Y.-J.E. and Heo, D. (2007) A 0.6-V Low Power UWB CMOS LNA. IEEE Microwave and Wireless Components Letters, 17, 229-231. http://dx.doi.org/10.1109/LMWC.2006.890502
[7] Heydari, P. (2007) Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA. IEEE Journal of Solid-State Circuits, 42, 1892-1905. http://dx.doi.org/10.1109/JSSC.2007.903046
[8] Kim, C.-W., Kaang, M.S., Anh, P.T., Kim, H.-T. and Lee, S.-G. (2005) An Ultra-Wideband CMOS Low Noise Amplifier for 3-5-GHz UWB System. IEEE Journal of Solid-State Circuits, 40, 554-547.
[9] Chen, H.K., Chiang, D.C., Juang, Y.Z. and Lu, S.S. (2007) A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques. IEEE Microwave and Wireless Components Letters, 17, 616-618. http://dx.doi.org/10.1109/LMWC.2007.901797
[10] Hsu, M.-T. and Hsu, S.-Y. (2009) A Low Power CMOS LNA for 1 - 10 GHz Application. IEEE Asia-Pacific Microwave Conference, 2009. APMC 2009, 1132-1135.
[11] Hsu, M.-T. and Liu, T.-S. (2010) Using Inverter Structure for 2-6GHz Low Power High Gain Low Noise Amplifier. Proceedings of the IEEE Asia-Pacific Microwave Conference, Yokohama, 7-10 December 2010, 346-349.
[12] Hsu, M.-T. and Lin, Y.-H. (2011) A Low Power High Gain CMOS LNA for UWB Receivers. Proceedings of the IEEE Asia-Pacific Microwave Conference, Melbourne, 5-8 December, 259-262.
[13] Reiha, M.T. and Long, J.R. (2007) A 1.2 V Reactive-Feedback 3.1-10.6 GHz Low-Noise Amplifier in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 42, 1023-1033. http://dx.doi.org/10.1109/JSSC.2007.894329
[14] Fu, C.T., Kuo, C.N. and Taylor, S.S. (2010) Low-Noise Amplifier Design with Dual Reactive Feedback for Broadband Simultaneous Noise and Impedance Matching. IEEE Transactions on Microwave Theory and Techniques, 58, 795-806. http://dx.doi.org/10.1109/TMTT.2010.2041570
[15] Yeh, H.C., Liao, Z.Y. and Wang, H. (2011) Analysis and Design of Millimeter-Wave Low-Power CMOS LNA with Transformer-Multicascode Topology. IEEE Transactions on Microwave Theory and Techniques, 59, 3441-3454.
[16] Pepe, D. and Zito, D. (2009) 22.7-dB Gain-19.7-dB ICP1dB UWB CMOS LNA. IEEE Transactions on Circuits and Systems II: Express Briefs, 56, 689-693.
[17] Park, B., Choi, S. and Hong, S. (2010) A Low-Noise Amplifier with Tunable Interference Rejection for 3.1 to 10.6-GHz UWB Systems. IEEE Microwave and Wireless Components Letters, 20, 40-42. http://dx.doi.org/10.1109/LMWC.2009.2035963
[18] Razavi, B. (2005) A UWB CMOS Transceiver. IEEE Journal of Solid-State Circuits, 40, 2555-2562. http://dx.doi.org/10.1109/JSSC.2005.857430
[19] Liao, C.F. and Liu, S.I. (2007) A Broadband Noise-Canceling CMOS LNA for 3.1-10.6-GHz UWB Receivers. IEEE Journal of Solid-State Circuits, 42, 329-339. http://dx.doi.org/10.1109/JSSC.2006.889356
[20] Wu, C.Y., Lo, Y.K. and Chen, M.C. (2009) A 3-10 GHz CMOS UWB Low-Noise Amplifier with ESD Protection Circuits. IEEE Microwave and Wireless Components Letters, 19, 737-739. http://dx.doi.org/10.1109/LMWC.2009.2032022
[21] Chen, K.H., Lu, J.H., Chen, B.J. and Liu, S.I. (2007) An Ultra-Wide-Band 0.4-10-GHz LNA in 0.18-μm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 54, 217-221.
[22] Weng, R.M., Liu, C.Y. and Lin, P.C. (2010) A Low-Power Full-Band Low-Noise Amplifier for Ultra-Wideband Receivers. IEEE Transactions on Microwave Theory and Techniques, 58, 2077-2083.
[23] Hasan, S.M.R. (2010) Analysis and Design of a Multistage CMOS Bandpass Low-Noise Preamplifier for Ultrawideband RF Receiver. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18, 638-651.
[24] Shaeffer, D.K. and Lee, T.H. (1997) A 1.5-V 1.5-GHz CMOS Low Noise Amplifier. IEEE Journal of Solid-State Circuits, 32, 745-759. http://dx.doi.org/10.1109/4.568846
[25] Bevilacqus, A. and Niknejad, A.M. (2004) An Ultrawideband CMOS Low-Noise Amplifier for 3.1-10.6-GHz Wireless Receivers. IEEE Journal of Solid-State Circuits, 39, 2259-2268. http://dx.doi.org/10.1109/JSSC.2004.836338
[26] Hsu, M.-T. and Li, K.-J. (2007) An Ultrawideband CMOS Low Noise Amplifier for 3.1-10.6GHz Wireless Communication. Proceedings of the 2007 IEEE International Conference on Ultra-Wideband, Singapore, 24-26 September 2007, 457-460.
[27] Lin, Y.S., Chen, C.Z., Tang, H.Y., Chen, C.C., Lee, J.H., Huang, G.W. and Lu, S.S. (2010) Analysis and Design of a CMOS UWB LNA with Dual-RLC-Branch Wideband Input Matching Network. IEEE Transactions on Microwave Theory and Techniques, 58, 287-296.
[28] Hsu, M.T. and Wu, K.L. (2011) Design of UWB Low Power Low Noise Amplifier with Body Bias Technique. Proceedings of the 2011 Asia-Pacific Microwave Conference, Melbourne, 5-8 December 2011, 227-230.
[29] Chien, J. and Lu, L. (2001) 40-Gb/s High-Gain Distributed Amplifiers with Casecaded Gain Stages in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 42, 2715-2725.
[30] Shaeffer, D. and Lee, T. (1997) A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier. IEEE Journal of Solid-State Circuits, 32, 745-759. http://dx.doi.org/10.1109/4.568846
[31] Lee, T.H. (2003) The Design of CMOS Radio-Frequency Integrated Circuits. Second Edition, Cambridge University Press, Cambridge.
[32] Lin, Y.J., Hsu, S.S.H., Jin, J.D. and Chan, C.Y. (2007) A 3.1 - 10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier with Current-Reuse Technique. IEEE Microwave and Wireless Components Letters, 17, 232-234. http://dx.doi.org/10.1109/LMWC.2006.890503
[33] Sapone, G. and Palmisano, G. (2011) A 3-10-GHz Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband Communication. IEEE Transactions on Microwave Theory and Techniques, 59, 678-686.
[34] Mou, S.X., Ma, J.-G., Seng, Y.K. and Anh, D.M. (2005) A Modified Architecture Used Input Matching in CMOS Low Noise Amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 52, 784-788.
[35] Huang, Z.Y., Huang, C.C., Hung, Y.T. and Chen, M.P. (2008) A CMOS Current Reused Low-Noise Amplifier for Ultra-Wideband Wireless Receiver. Proceedings of the International Conference on Microwave and Millmeter Wave Technology, Nanjing, 21-24 April 2008, 1499-1502.
[36] Jean-Baptiste, B., Thierry, T. and Herve, L. (2004) Body Effect Principle Applied to RF CMOS Circuits. Proceedings of the 16th International Conference on Microelectronics, Tunis, 6-8 December 2004, 114-117.
[37] Wu, D., Huang, R., Wong, W. and Wang, Y. (2007) A 0.4V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application. IEEE Microwave and Wireless Components Letters, 17, 543-545. http://dx.doi.org/10.1109/LMWC.2007.899323
[38] Liu, Y. and Yuan, J.S. (2011) CMOS RF Low-Noise Amplifier Design for Variability and Reliability. IEEE Transactions on Device and Materials Reliability, 11, 450-457.
[39] Li, C.M., Li, M.T., He, K.C. and Tarng, J.H. (2010) A Low-Power Self-Forward-Body-Bias CMOS LNA for 3-6.5 GHz UWB Receivers. IEEE Microwave and Wireless Components Letters, 20, 100-102. http://dx.doi.org/10.1109/LMWC.2009.2038526
[40] Chang, J.-F. and Lin, Y.-S. (2011) 0.99 mW 3-10 GHz Common-Gate CMOS UWB LNA Using T-Match Input Network and Self-Body-Bias Technique. Electronics Letters, 47, 658-659.
[41] Gramegna, G. and Erratico, G. (2001) A Sub-1-dB NF ± 2.3-kV ESD-Protected 900-MHz COS LNA. IEEE Journal of Solid-State Circuit, 36, 1010-1017.
[42] Chen, M.Q. and Lin, J.S. (2009) A 0.1-20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS. IEEE Microwave and Wireless Components Letters, 19, 323-352.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.