Share This Article:

Multiband Monopole Antenna with Sector-Nested Fractal

Full-Text HTML XML Download Download as PDF (Size:1377KB) PP. 41-49
DOI: 10.4236/wet.2015.63005    7,485 Downloads   8,022 Views  
Author(s)    Leave a comment

ABSTRACT

A kind of novel multi-frequency monopole antenna with sector-nested fractal is proposed and designed, which is nested with a series of similar circular sector elements. By means of the trapeziform ground plane with the tapered CPW (coplanar waveguide) feeder in the middle, the antenna’s radiation performance is greatly improved. The antennas can synchronously operate in three frequencies, covering the working frequency bands of WLAN/WiMAX, 2.44 GHz/3.5 GHz/5.2 GHz - 5.8 GHz. The pattern and impedance measurements of antenna show a good performance over the WLAN/WiMAX band; it possesses a near omni-directional characteristic and good radiation efficiency. Moreover, the antenna is miniature and its design idea can be easily applied into other types of nested structure, the features of which make the proposed antenna have a promising application in other fields.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zhang, J. and Zhang, W. (2015) Multiband Monopole Antenna with Sector-Nested Fractal. Wireless Engineering and Technology, 6, 41-49. doi: 10.4236/wet.2015.63005.

References

[1] Pourahmadazar, J., Ghobadi, C., Nourinia, J. and Shirzad, H. (2012) Multi-Band Ring Fractal Antenna for Mobile Devices. IEEE Antennas and Wireless Propagation Letters, 9, 863-866.
[2] Best, S.R. (2012) On the Resonant Properties of the Koch Fractal and Other Wire Monopole Antennas. IEEE Antennas and Wireless Propagation Letters, 1, 74-76. http://dx.doi.org/10.1109/LAWP.2002.802550
[3] Sundram, A., Maddela, M. and Ramadoss, R. (2007) Koch-Fractal Folded-Slot Antenna Characteristics. IEEE Antennas and Wireless Propagation Letters, 6, 219-222. http://dx.doi.org/10.1109/LAWP.2007.895293
[4] Best, S.R. (2013) On The Performance Properties of the Koch Fractal and Other Bent Wire Monopoles. IEEE Transactions on Antennas and Propagation, 51, 1292-1300. http://dx.doi.org/10.1109/TAP.2003.812257
[5] Mirzapour, B. and Hassani, H.R. (2008) Size Reduction and Bandwidth Enhancement of Snowflake Fractal Antenna. IET Microwaves, Antennas & Propagation, 2, 180-187. http://dx.doi.org/10.1049/iet-map:20070133
[6] Huang, C.Y. and Hsia, W.C. (2005) Planar Elliptical Antenna for Ultra-Wideband Communications. Electronics Letters, 41, 296-297. http://dx.doi.org/10.1049/el:20057244
[7] Chen, K.R., Sim, C.Y.D. and Row, J.S. (2013) A Compact Monopole Antenna for Super Wideband Applications. IEEE Antennas and Wireless Propagation Letters, 10, 488-491. http://dx.doi.org/10.1109/LAWP.2011.2157071
[8] Deng, C., Xie, Y.J. and Li, P. (2009) CPW-Fed Planar Printed Monopole Antenna with Impedance Bandwidth Enhanced. IEEE Antennas and Wireless Propagation Letters, 8, 1394-1397.
[9] Dong, Y., Hong, W., Liu, L., Zhang, Y. and Kuai, Z. (2009) Performance Analysis of a Printed Super-Wideband Antenna. Microwave and Optical Technology Letters, 51, 949-956. http://dx.doi.org/10.1002/mop.24222
[10] Baliarda, C.P., Romeu, J. and Cardama, A. (2000) The Koch Monopole: A Small Fractal Antenna. IEEE Transactions on Antennas and Propagation, 48, 1773-1781. http://dx.doi.org/10.1109/8.900236
[11] Karim, M.N.A., Rahim, M.K.A., Ayop, O.B., Abu, M. and Zubir, F. (2013) Log Periodic Fractal Koch Antenna for UHF Band Applications. Progress in Electromagnetic Research (PIER), 100, 201-218. http://dx.doi.org/10.2528/PIER09110512
[12] Best, S.R. (2012) The Effectiveness of Space-Filling Fractal Geometry in Lowering Resonant Frequency. IEEE Antennas and Wireless Propagation Letters, 1, 112-115. http://dx.doi.org/10.1109/LAWP.2002.806050
[13] Venoy, K.J., Abraham, J.K. and Varadan, V.K. (2003) Fractal Dimension and Frequency Response of Fractal Shaped Antennas. Proceedings of IEEE Antennas and Propagation Society International Symposium, 4, 222-225.
[14] Rumsey, V. (1966) Frequency Independent Antennas. Academic, New York.
[15] Zhong, S.S., Liang, X.L. and Wang, W. (2007) Compact Elliptical Monopole Antenna with Impedance Bandwidth in Excess of 21:1. IEEE Transactions on Antennas and Propagation, 55, 3080-3085.
[16] Ma, T.G. and Jeng, S.K. (2005) Planarminiature Tapered-Slot-Fed Annular Slotantennas for Ultra Wideband Radios. IEEE Transactions on Antennas and Propagation, 53, 1194-1202. http://dx.doi.org/10.1109/TAP.2004.842648

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.