Share This Article:

On Simple Completely Reducible Binary-Lie Superalgebras over sl2(F)

Abstract Full-Text HTML XML Download Download as PDF (Size:396KB) PP. 314-323
DOI: 10.4236/apm.2015.55030    3,798 Downloads   4,172 Views  
Author(s)    Leave a comment

ABSTRACT

In this article, we prove that if B is a simple binary-Lie superalgebra whose even part is isomorphic to sl2(F)  and whose odd part is a completely reducible binary-Lie-module over the even part, then B is a Lie superalgebra. We introduce also a binary-Lie module over which is sl2(F) not completely reducible.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Arenas, M. (2015) On Simple Completely Reducible Binary-Lie Superalgebras over sl2(F). Advances in Pure Mathematics, 5, 314-323. doi: 10.4236/apm.2015.55030.

References

[1] Humphreys, J.E. (1972) Introduction to Lie Algebras and Representation Theory. Springer Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-6398-2
[2] Jacobson, N. (1979) Lie Algebras. Dover, New York.
[3] Kac, V.G. (1977) Lie Superalgebras. Advances in Mathematics, 26, 8-96.
http://dx.doi.org/10.1016/0001-8708(77)90017-2
[4] Malcev, A.I. (1955) Analytic Loops. Mat. Sb. N.S, 36, 569-576.
[5] Sagle, A.A. (1961) Malcev Algebras. Transactions of the American Mathematical Society, 101, 426-458.
http://dx.doi.org/10.1090/S0002-9947-1961-0143791-X
[6] Perez-Izquierdo, J.M. and Shestakov, I.P. (2004) An Envelope for Malcev Algebras. Journal of Algebra, 272, 379-393.
http://dx.doi.org/10.1016/S0021-8693(03)00389-2
[7] Shestakov, I.P. (1998) Speciality Problem for Malcev Algebras and Poisson Malcev Algebras. Nonassociative Algebra and Its Applications. Sao Paulo, 365-371.
[8] Shestakov, I.P. and Zhukavets, N. (2007) The Free Malcev Superalgebras on One Odd Generator and Related Superalgebras. Journal of Mathematical Sciences, 140, 243-249.
http://dx.doi.org/10.1007/s10958-007-0421-x
[9] Shestakov, I.P. and Zhukavets, N. (2006) The Universal Multiplicative Envelope of the Free Malcev Superalgebra on One Odd Generator. Communications in Algebra, 34, 1319-1344.
http://dx.doi.org/10.1080/00927870500454570
[10] Shestakov, I.P. and Zhukavets, N. (2006) The Malcev Poisson Supelalgebra of the Free Malcev Superalgebra on One Odd Generator. Journal of Algebra and Its Applications, 5, 521-535.
http://dx.doi.org/10.1142/S0219498806001867
[11] Gainov, A.T. (1957) Identical Relations for Binary-Lie Rings. Uspehi Mat. Nauk (N.S.), 12, 141-146.
[12] Arenas, M. and Shestakov, I.P. (2011) On Speciality of Binary-Lie Algebras. Journal of Algebra and Its Applications, 10, 257-268.
http://dx.doi.org/10.1142/S0219498811004550
[13] Filipov, V.T. (2008) Binary-Lie Algebras Satisfying the Third Engel Condition. Sibirskii Matematicheskii Zhurnal, 49, 928-933.
http://dx.doi.org/10.1007/s11202-008-0071-3
[14] Gainov, A.T. (1963) Binary Lie Algebras of Lower Ranks. Algebra i Logika, 2, 21-40.
[15] Grishkov, A.N. (1977) On the Theory of Finite Dimensional Binary Lie Algebras. Algebra i Logika, 16, 549-556.
http://dx.doi.org/10.1007/BF01669476
[16] Grishkov, A.N. (1980) Structure and Representaion of Binary Lie Algebras. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 44, 999-1030.
[17] Grishkov, A.N. (1988) Finite-Dimensional Solvable Binary Lie Algebras. Sibirskii Matematicheskii Zhurnal, 29, 48-52.
[18] Kuzmin, E.N. (1998) Binary Lie Algebras of Small Dimentions. Algebra and Logic, 37, 181-186.
http://dx.doi.org/10.1007/BF02671589
[19] Shestakov, I.P. (1993) Prime Malcev Superalgebras. Mathematics, 182, 1357-1366.
http://dx.doi.org/10.1070/SM1993v074n01ABEH003337

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.