Share This Article:

A Fractal Rindler-Regge Triangulation in the Hyperbolic Plane and Cosmic de Sitter Accelerated Expansion

Abstract Full-Text HTML XML Download Download as PDF (Size:302KB) PP. 24-31
DOI: 10.4236/jqis.2015.51004    4,397 Downloads   4,814 Views   Citations

ABSTRACT

The well known finite elements Regge calculus is transformed to a triangulation in the hyperbolic plane using fractal Rindler wedges as tiling elements. The final result is an expanding de Sitter hyperbolic, i.e. Gauss-Bolyai-Lobachevsky universe with dark energy and ordinary energy densities in full agreement with cosmic observations and measurements. In the course of obtaining this vital result, the work addresses fundamental points connected to a host of subjects, namely Hardy’s quantum entanglement, an extension of Turing’s machine to a transfinite version, the phenomenon of measure concentration in the context of Banach-like spaces with high dimensionality as well as the pioneering work on the relation between quantum entanglement and computational efficiency.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Naschie, M. (2015) A Fractal Rindler-Regge Triangulation in the Hyperbolic Plane and Cosmic de Sitter Accelerated Expansion. Journal of Quantum Information Science, 5, 24-31. doi: 10.4236/jqis.2015.51004.

References

[1] Regge, T. (1961) General Relativity without Coordinates. Il Nuovo Cimento Series 10, 19, 558-571.
[2] Regge, T. and Wheeler, J.A. (1957) Stability of Schwarzschild Singularity. Physics Review, 108, 1063.
http://dx.doi.org/10.1103/PhysRev.108.1063
[3] Misner, C., Thorne, K. and Wheeler, J. (1973) Gravitation. Freeman, New York.
[4] El Naschie, M.S. (2007) The Fibonacci Code Behind Superstrings and P-Branes. An Answer to M. Kaku’s Fundamental Question. Chaos, Solitons & Fractals, 31, 537-547.
http://dx.doi.org/10.1016/j.chaos.2006.07.001
[5] El Naschie, M.S. (2013) The Quantum Gravity Immirzi Parameter—A General Physical and Topological Interpretation. Gravity and Cosmology, 19, 151-153.
http://dx.doi.org/10.1134/S0202289313030031
[6] El Naschie, M.S. (2005) Einstein’s Dream and Fractal Gravity. Chaos, Solitons & Fractals, 24, 1-5.
http://dx.doi.org/10.1016/j.chaos.2004.09.001
[7] El Naschie, M.S. (2001) Fisher’s Scaling and Dualities at High Energy in E-infinity Spaces. Chaos, Solitons & Fractals, 12, 1557-1561.
http://dx.doi.org/10.1016/S0960-0779(00)00127-2
[8] Argyris, J., Ciubotariu, C. and Weingartner, W.E. (1999) Progress in Physical Concepts and Strings and Superstring Theory—Thirty Years of String Theory. Chaos, Solitons & Fractals, 10, 225-256.
http://dx.doi.org/10.1016/S0960-0779(98)00320-8
[9] Marek-Crnjac, L. and El Naschie, M.S. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and VenezianoModel. Applied Mathematics, 4, 22-29.
http://dx.doi.org/10.4236/am.2013.411A2005
[10] Sidharth, B.G. (2006) Strings and Planck Oscillator. Chaos, Solitons & Fractals, 30, 300-311.
http://dx.doi.org/10.1016/j.chaos.2006.01.114
[11] El Naschie, M.S. (2014) Compactified Dimensions as Produced by Quantum Entanglement, the Four Dimensionality of Einstein’s Smooth Spacetime and ‘t Hooft’s 4-ε Fractal Spacetime. American Journal of Astronomy & Astrophysics, 2, 34-37.
http://dx.doi.org/10.11648/j.ajaa.20140203.12
[12] El Naschie, M.S. (2013) Dark Energy of the Quantum Hawking-Hartle Wave of the Cosmos from the Holographic Boundary and Lie Symmetry Groups—Exact Computation and Physical Interpretation. Fractal Spacetime and Noncommutative Geometry in Quantum High Energy Physics, 3, 11-20.
[13] Jurkiewicz, A.J. and Loll, R. (2008) The Self-Organizing Quantum Universe. Scientific American, 24-31.
[14] El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.
http://dx.doi.org/10.4236/ijaa.2013.34056
[15] Supernova Cosmology Project Collaboration, Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Omega and Lambda from 42 High-Redshift Supernova. Astrophysical Journal, 517, 565-585.
[16] Panek, R. (2010) Dark Energy: The Biggest Mystery in the Universe. The Smithsonian Magazine.
http://www.smithsonianmagazine.com/science-nature/Dark-Energy-April.
[17] El Naschie, M.S. (2014) On a New Elementary Particle from the Disintegration of the Symplectic’t Hooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, 216-221.
http://dx.doi.org/10.4236/wjnst.2014.44027
[18] El Naschie, M.S. (2014) Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.
http://dx.doi.org/10.4236/ijaa.2014.41009
[19] Helal, M.A., Marek-Crnjac, L. and He, J-H. (2013) The Three Page Guide to the Most Important Results of M.S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020
[20] Marek-Crnjac, L. and He, J-H. (2013) An Invitation to El Naschie’s Theory of Cantorian Space-Time and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
http://dx.doi.org/10.4236/ijaa.2013.34053
[21] Auffray, J.P. (2014) E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment. Journal of Modern Physics, 5, 1427-1436.
http://dx.doi.org/10.4236/jmp.2014.515144
[22] El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53.
http://dx.doi.org/10.4236/jqis.2011.12007
[23] Amendola, L. and Tsujikawa, S. (2010) Dark Energy: Theory and Observations. Cambridge University Press, Cambridge.
[24] El Naschie, M.S. (2013) A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23-26. http://dx.doi.org/10.4236/jqis.2013.31006
[25] El Naschie, M.S. (2006) Elementary Prerequisites for E-Infinity (Recommended Background Readings in Nonlinear Dynamics, Geometry and Topology). Chaos, Solitons & Fractals, 30, 579-605.
http://dx.doi.org/10.1016/j.chaos.2006.03.030
[26] El Naschie, M.S. (2008) Extended Renormalizations Group Analysis for Quantum Gravity and Newton’s Gravitational Constant. Chaos, Solitons & Fractals, 35, 425-431.
http://dx.doi.org/10.1016/j.chaos.2007.07.059
[27] El Naschie, M.S. (2008) Transfinite Harmonization by Taking the Dissonance out of the Quantum Field Symphony. Chaos, Solitons & Fractals, 36, 781-786.
http://dx.doi.org/10.1016/j.chaos.2007.09.018
[28] El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[29] El Naschie, M.S. (2006) Elementary Number Theory in Superstring Loop Quantum Mechanics, Twistors and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 27, 297-330.
http://dx.doi.org/10.1016/j.chaos.2005.04.116
[30] El Naschie, M.S. (2006) Intermediate Prerequisites for E-Infinity Theory. Chaos, Solitons & Fractals, 30, 622-628.
http://dx.doi.org/10.1016/j.chaos.2006.04.042
[31] El Naschie, M.S. (2006) Advanced Prerequisites for E-Infinity Theory. Chaos, Solitons & Fractals, 30, 636-641.
http://dx.doi.org/10.1016/j.chaos.2006.04.044
[32] El Naschie, M.S. (2006) Topics in the Mathematical Physics of E-Infinity Theory. Chaos, Solitons & Fractals, 30, 656-663.
http://dx.doi.org/10.1016/j.chaos.2006.04.043
[33] El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.
http://dx.doi.org/10.1016/j.chaos.2008.09.059
[34] El Naschie, M.S., Olsen, S, He, J-H., Marek-Crnjac, L., Nada, S.I. and Helal, M.A. (2012) On the Need for Fractal Logic in High Energy Quantum Physics. Fractal Spacetime & Noncommutative Geometry in Quantum & High Energy Physics, 2, 80-92.
[35] El Naschie, M.S. (2013) The Hyperbolic Extension of Sigalotti-Hendi-Sharifzadeh’s Golden Triangle of Special Theory of Relativity and the Nature of Dark Energy. Journal of Modern Physics, 4, 354-356.
http://dx.doi.org/10.4236/jmp.2013.43049
[36] Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego.
[37] El Naschie, M.S. (2008) From Classical Gauge Theory Back to Weyl Scaling via E-Infinity Spacetime. Chaos, Solitons & Fractals, 38, 980-985.
http://dx.doi.org/10.1016/j.chaos.2008.05.017
[38] Marek-Crnjac, L. (2003) The Mass Spectrum of High Energy Elementary Particles via El Naschie’s E-Infinity Golden Mean Nested Oscillators and the Dunkerly Southwell Eigenvalue Theorems and KAM. Chaos, Solitons & Fractals, 18, 125-133.
http://dx.doi.org/10.1016/S0960-0779(02)00587-8
[39] Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.
[40] He, J-H. (2005) Transfinite Physics. China Culture & Science Publishing, Beijing.
[41] ‘t Hooft, G. (1997) In Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge.
[42] Wikipedia-Matter (2014) Pie Charts Showing the Fractions of Energy in the Universe. Contributed by Different Sources.
http://en.wikipedia.org/wiki/Matter
[43] El Naschie, M.S., He, J-H., Nada, S.I., Marek-Crnjac, L. and Helal, M. (2012) Golden Mean Computer for High Energy Physics. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 2, 80-92.
[44] Beck, G, Bethe, H. and Riezler, W. (1931) Remarks on Quantum Theory of the Absolute Zero Temperature. Die Naturwissenschaften, 2, 38-39. (In German)
[45] El Naschie, M.S. (2006) The Unreasonable Effectiveness of the Electron-Volt Units System in High Energy Physics and the Role Played by . International Journal of Nonlinear Sciences and Numerical Simulation, 7, 119-128.
http://dx.doi.org/10.1515/IJNSNS.2006.7.2.119
[46] El Naschie, M.S. (2006) On the Vital Role Played by the Electron-Volts Units System in High Energy Physics and Mach’s Principle of “Denkokonomie”. Chaos, Solitons & Fractals, 28, 1366-1371.
http://dx.doi.org/10.1016/j.chaos.2005.11.001
[47] Zhong, T. (2009) From the Numeric of Dynamics to the Dynamics of Numeric and Visa Versa in High Energy Particle Physics. Chaos, Solitons & Fractals, 42, 1780-1783.
http://dx.doi.org/10.1016/j.chaos.2009.03.079
[48] El Naschie, M.S. (2007) On the Topological Ground State of E-Infinity Spacetime and the Super String Connection. Chaos, Solitons & Fractals, 32, 468-470.
http://dx.doi.org/10.1016/j.chaos.2006.08.011
[49] Devaney, R.L. (1989) Chaotic Dynamical Systems. Addison-Wesley, New York.
[50] Bhatia, N.P. and Egerland, W. (1988) A Refinement of Sarkovski’s Theorem. Proceedings of the American Mathematical Society, 102, 965-972.
[51] MacGregor, M.H. (2007) The Power of Alfa (α)-Electron Elementary Particle Generation With α-Quantized Lifetime and Masses. World Scientific, Singapore.
[52] Li, T. and Yorke, J. (1975) Period Three Implies Chaos. The American Mathematical Monthly, 82, 985-992.
http://dx.doi.org/10.2307/2318254
[53] Rossler, O.E. (1998) Endophysics, World Scientific, Singapore.
http://dx.doi.org/10.1142/3183
[54] El Naschie, M.S. (2001) On a General Theory for Quantum Gravity. In: Diebner, H., Druckrey, T. and Weibel, P., Eds., Science of the Interface, GenistaVerlag, Tübingen.
[55] Addison, P.S. (1997) Fractals and Chaos: An Illustrated Course. Institute of Physics, Bristol.
[56] El Naschie, M.S. (1991) Peano Dynamics as a Model for Turbulence and Strange Nonchaotic Behaviour. Acta Physica Polonica A, 80, 1-13.
[57] El Naschie, M.S. (2007) Feigenbaum Scenario for Turbulence and Cantorian E-Infinity Theory of High Energy Particle Physics. Chaos, Solitons & Fractals, 32, 911-915. http://dx.doi.org/10.1016/j.chaos.2006.08.014
[58] El Naschie, M.S. (2002) Determining the Temperature of Microwave Background Radiation from the Topology of Geometry of Spacetime. Chaos, Solitons & Fractals, 14, 1121-1126.
http://dx.doi.org/10.1016/S0960-0779(02)00172-8
[59] El Naschie, M.S. (2009) On Zero Dimensional Points Curvature in the Dynamics of Cantorian-Fractal Spacetime Setting and High Energy Particle Physics. Chaos, Solitons & Fractals, 41, 2725-2732.
http://dx.doi.org/10.1016/j.chaos.2008.10.001
[60] El Naschie, M.S. (2005) ‘t Hooft Ultimate Building Blocks and Spacetime as an Infinite Dimensional Set of Transfinite Discrete Points. Chaos, Solitons & Fractals, 25, 521-524.
http://dx.doi.org/10.1016/j.chaos.2005.01.022
[61] Pati, A.K. and Brauenstein, S.L. (2009) Role of Entanglement in Quantum Computation. Indian Institute of Science Journal (Special Issue), 89, 295.
[62] Pati, A.K. (2006) Entanglement Guides Quantum Computation. In: Goswami, D., Ed., Quantum Coupling, Back Action, AIP Publication, College Park, Vol. 864, 114-126.
[63] Agrawal, P. and Pati, A.K. (2006) Perfect Teleportation and Superdense Coding with W-State. Physics Review A, 74, Article ID: 062320.
http://dx.doi.org/10.1103/PhysRevA.74.062320

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.