Share This Article:

Molecular Structure, Vibrational Analysis and First Order Hyperpolarizability of 4-Methyl-3-Nitrobenzoic Acid Using Density Functional Theory

Abstract Full-Text HTML Download Download as PDF (Size:735KB) PP. 91-107
DOI: 10.4236/opj.2015.53008    3,214 Downloads   4,221 Views   Citations

ABSTRACT

The Fourier Transform Infrared (FTIR) and FT-Raman spectra of 4-methyl-3-nitrobenzoic acid have been recorded in the range 4000 - 400 cm-1 and 3500 - 50 cm-1, respectively. The optimized geometry of the molecule, its vibrational frequencies along with corresponding intensities have been computed using the Density Functional Theory (DFT) employing B3LYP/6-311++G basis set. The scaled values of harmonic vibrational frequencies obtained in the computations have been compared with their experimental counter parts. The scaling factors have been refined to reproduce the frequencies with an RMS error of 11.68 cm-1 between the experimental and computed frequencies. The theoretically constructed spectra agree satisfactorily with those of experimental spectra. First order hyperpolarizability constants have also been evaluated.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Prashanth, J. , Ramesh, G. , Naik, J. , Ojha, J. , Reddy, B. and Rao, G. (2015) Molecular Structure, Vibrational Analysis and First Order Hyperpolarizability of 4-Methyl-3-Nitrobenzoic Acid Using Density Functional Theory. Optics and Photonics Journal, 5, 91-107. doi: 10.4236/opj.2015.53008.

References

[1] Loapez-Token, I., Becucci, M., Pietraperzia, G., Castellucci, E. and Otero, J.C. (2001) Vibrational Spectrum of 4-Fluoroaniline. Journal of Molecular Structure, 565-566, 421-425.
http://dx.doi.org/10.1016/S0022-2860(00)00903-0
[2] Pulay, P., Fogarasi, G., Pongor, G., Boggs, J.E. and Vargha, A. (1983) Combination of Theoretical Ab Initio and Experimental Information to Obtain Reliable Harmonic Force Constants. Journal of the American Chemical Society, 105, 7037-7047.
http://dx.doi.org/10.1021/ja00362a005
[3] Yoshida, H., Ehara, A. and Massura, H. (2000) Density Functional Vibrational Analysis Using Wavenumber-Linear Scale Factors. Chemical Physics Letters, 325, 477-483.
http://dx.doi.org/10.1016/S0009-2614(00)00680-1
[4] Sundius, T. (2002) Scaling of Ab Initio Force Fields by MOLVIB. Vibrational Spectroscopy, 29, 89-95.
http://dx.doi.org/10.1016/S0924-2031(01)00189-8
[5] Rauhut, G. and Pulay, P. (1995) Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. Journal of Physical Chemistry, 99, 3093-3100.
http://dx.doi.org/10.1021/j100010a019
[6] Xu, L.C., Li, Z-Y., Tan, W., He, T-J., Liu, F-C. and Chen, D-M. (2005) Density Functional Theory Studies on the Raman and IR Spectra of Meso-Tetraphenylporphyrin Diacid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62, 850-862.
http://dx.doi.org/10.1016/j.saa.2005.03.015
[7] Krishna Kumar, V., John Xavier, R. and Chithambarathanu, T. (2005) Density Functional Theory Study of Vibrational Spectra, and Assignment of Fundamental Vibrational Modes of Succinimide and N-Bromosuccinimide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62, 931-939.
[8] Varasanyi, G. (1974) Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives. Vol. 1, Adam Hilger, London, 21, 55, 118, 124, 128, 135, 146, 164, 168, 200, 203, 205, 209, 221, 244, 248, 251, 268, 288, 303, 330-331, 334-335, 337-338, 351, 356-358, 380, 382-384, 387, 395, 397-398, 401-402, 405, 412-413, 416, 427, 435.
[9] James, C., Ravikumar, C., Sundius, T., Krishnakumar, V., Kesavamurthy, R., Jayakumar, V.S. and Hubert Joe, I. (2008) FT-Raman and FTIR Spectra, Normal Coordinate Analysis and Ab Initio Computations of (2-Methylphenoxy) Acetic Acid Dimer. Vibrational Spectroscopy, 47, 10-20.
http://dx.doi.org/10.1016/j.vibspec.2008.01.006
[10] Furic, K. and Durig, J.R. (1986) Proton-Pair Disorder in Dimers of Aromatic Carboxylic Acids: Vibrational Spectra of Benzoic Acid at Low Temperatures. Chemical Physics Letters, 126, 92-97.
http://dx.doi.org/10.1016/0009-2614(86)85122-3
[11] Gunasekaran, S., Natarajan, R.K., Syamala, D. and Rathikha, R. (2006) Normal Coordinate Analysis of Urea Meta Nitro Benzoic Acid Crystal. Indian Journal of Pure and Applied Physics, 44, 315-319.
[12] Sundaraganesan, N., Dominic Joshua, B. and Settu, K. (2007) Vibrational Spectra and Assignments of 5-Amino-2-chlorobenzoic Acid by Ab Initio Hartree-Fock and Density Functional Methods. Spectrochimica Acta Part A, 66, 381-388.
http://dx.doi.org/10.1016/j.saa.2006.03.008
[13] Sundaraganesan, N., Dominic Joshua, B., Meganathan, C., Meenakshi, R. and Cornard, J.P. (2008) Vibrational Spectra and Quantum Chemical Calculations of 3,4-Diaminobenzoic Acid. Spectrochimica Acta Part A, 70, 376-383.
http://dx.doi.org/10.1016/j.saa.2007.10.051
[14] Ramalingam, M., Sundaraganesan, N., Saleem, H. and Swaminathan, J. (2008) Experimental (FTIR and FT-Raman) and Ab Initio and DFT Study of Vibrational Frequencies of 5-Amino-2-nitrobenzoic Acid. Spectrochimica Acta Part A, 71, 23-30.
http://dx.doi.org/10.1016/j.saa.2007.11.016
[15] Sundaraganesan, N., Dominic Joshua, B. and Radjakonmar, T. (2009) Molecular Structure and Vibrational Spectra of 2-Chlorobenzoic Acid by Density Functional Theory and Ab Initio Hartree-Fock Calculations. Indian Journal of Pure and Applied Physics, 47, 248-258.
[16] Tyagi, O.D. and Yadav, M. (1990) Text Book of Synthetic Drugs. Fifth Edition, Anmol Publications, New Delhi, 49.
[17] Guo, H., Li, M.H., Chen, P., Blake, D.J., Kong, X.N., Hao, X.S., Niu, R.F. and Zhang, N. (2012) 4-Methyl-3-nitrobenzoic Acid, a Migration Inhibitor, Prevents Breast Cancer Metastasis in SCID Mice. Cancer Letters, 324, 232.
http://dx.doi.org/10.1016/j.canlet.2011.08.005
[18] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian, Inc., Wallingford.
[19] Becke, A.D. (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652.
http://dx.doi.org/10.1063/1.464913
[20] Lee, C., Yang, W. and Parr, R.G. (1998) Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[21] Berces, A. and Ziegler, T. (1993) Dynamics of Molecules and Chemical Reactions. The Journal of Chemical Physics, 98, 4793-4804.
[22] Pulay, P., Fogarasi, G., Pongor, G., Boggs, J.E. and Vargha, A. (1983) Combination of Theoretical Ab Initio and Experimental Information to Obtain Reliable Harmonic Force Constants. Scaled Quantum Mechanical (SQM) Force Fields for Glyoxal, Acrolein, Butadiene, Formaldehyde, and Ethylene. Journal of the American Chemical Society, 105, 7037-7047.
http://dx.doi.org/10.1021/ja00362a005
[23] Fogarasi, G., Pulay, P. and Durig, J.R., Eds. (1985) Chapter 3, Vibrational Spectra and Structure. Elsevier, Amsterdam, Vol. 14, 125.
[24] Fogarasi, G., Zhou, X., Tayler, P.W. and Pulay, P. (1992) The Calculation of Ab Initio Molecular Geometries: Efficient Optimization by Natural Internal Coordinates and Empirical Correction by Offset Forces. Journal of the American Chemical Society, 114, 8191-8201.
http://dx.doi.org/10.1021/ja00047a032
[25] Sundius, T. (1990) Molvib—A Flexible Program for Force Field Calculations. Journal of Molecular Structure, 218, 321-326.
http://dx.doi.org/10.1016/0022-2860(90)80287-T
[26] Sundius, T. (2002) Scaling of Ab Initio Force Fields by MOLVIB. Vibrational Spectroscopy, 29, 89-95.
http://dx.doi.org/10.1016/S0924-2031(01)00189-8
MOLVIB (V.7.0), Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807, 2002.
[27] Keresztury, G., Holly, S., Varga, J., Besenyei, G., Warng, A.Y. and Durig, J.R. (1993) Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and Ab Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A, 49, 2007-2017, 2019-2026.
http://dx.doi.org/10.1016/S0584-8539(09)91012-1
[28] Keresztury, G., Chalmers, J.M. and Griffth, P.R., Eds. (2002) Raman Spectroscopy: Theory in Handbook of Vibrational Spectroscopy. Volume 1, John Wiley and Sons Ltd., New York, 71.
[29] Klienman, D.A. (1962) Nonlinear Dielectric Polarization in Optical Media. Physical Review, 126, 1977-1979.
http://dx.doi.org/10.1103/PhysRev.126.1977
[30] Zhang, R., Du, B., Sun, G. and Sun, Y.X. (2002) Experimental and Theoretical Studies on o-, m- and p-Chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A, 75, 1115-1124.
http://dx.doi.org/10.1016/j.saa.2009.12.067
[31] Abe, T., Saito, H., Niikura, Y. and Nakano, Y. (2001) Embryonic Development Assay with Daphnia magna: Application to Toxicity of Aniline Derivatives. Chemosphere, 45, 487-495.
http://dx.doi.org/10.1016/S0045-6535(01)00049-2
[32] Lipkowitz, K.B. (1982) A Reassessment of Nitrobenzene Valence Bond Structures. Journal of the American Chemical Society, 104, 2647-2648.
http://dx.doi.org/10.1021/ja00373a057
[33] Altun, A., Golcuk, K. and Kumru, M. (2003) Theoretical and Experimental Studies of Vibrational Spectra of m-Methylaniline. Journal of Molecular Structure, 625, 17-24.
[34] Politzer, P., Abrahmsen, L. and Sjoberg, P. (1984) Theoretical Organic Chemistry. Journal of the American Chemical Society, 106, 855-860.
http://dx.doi.org/10.1021/ja00316a005
[35] Domenicano, A., Schultz, G., Harigittew, I., Colapietro, M., Portalone, G., George, P. and Bock, C.W. (1989) Molecular Structure of Nitrobenzene in the Planar and Orthogonal Conformations: A Concerted Study by Electron Diffraction, X-Ray Crystallography, and Molecular Orbital Calculations. Structural Chemistry, 1, 107-122.
[36] Brunvoll, J., Samdal, S., Thomassen, H., Vilkov, L.V. and Volden, H.V. (1990) The Molecular Structure of Iodobenzene and p-Iodonitrobenzene in the Gaseous State. Acta Chemica Scandinavica, 44, 23-30.
http://dx.doi.org/10.3891/acta.chem.scand.44-0023
[37] Wilson, E.B. (1934) The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule. Physical Review, 45, 706-714.
http://dx.doi.org/10.1103/PhysRev.45.706
[38] Patel, N.D., Kartha, V.B. and Narasimham, N.A. (1973) Vibrational Spectra Dihalogenated Benzenes. I. In-Plane Vibrations. Journal of Molecular Spectroscopy, 48, 185-201.
http://dx.doi.org/10.1016/0022-2852(73)90185-9
[39] La Lau, C. and Snyder, R.G. (1971) A Valence Force Field for Alkyl Benzenes Toluene, p-Xylene, m-Xylene Mesitylene, and Some of Their Deuterated Analogues. Spectrochimica Acta Part A, 27, 2073-2088.
http://dx.doi.org/10.1016/0584-8539(71)80105-8
[40] Sun, Y.X., Hao, Q.L., Wei, W.X., Yu, Z.X., Lu, L.D., Wang, X. and Wang, Y.S. (2009) Experimental and Density Functional Studies on 4-(3,4-Dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-Trihydroxybenzylidene-amino) Antipyrine. Journal of Molecular Structure: THEOCHEM, 904, 74-82.
[41] Andraud, C., Brotin, T., Garcia, C., Pelle, F., Goldner, P., Bigot, B. and Collet, A. (1994) Theoretical and Experimental Investigations of the Nonlinear-Optical Properties of Vanillin, Polyenovanillin, and Bisvanillin Derivatives. Journal of the American Chemical Society, 116, 2094-2102.
http://dx.doi.org/10.1021/ja00084a055
[42] Geskin, V.M., Lambert, C. and Bredas, J.L. (2004) Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: The Remarkable Role of Polarized Aromatic Groups. Journal of the American Chemical Society, 125, 15651-15658.
http://dx.doi.org/10.1021/ja035862p
[43] Nakano, M., Fujita, H., Takahata, M. and Yamaguchi, K. (2002) Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure-Property Relation in NLO Responses of Fractal Antenna Dendrimers. Journal of the American Chemical Society, 124, 9648-9655.
http://dx.doi.org/10.1021/ja0115969
[44] Sajan, D., Joe, H., Jayakumar, V.S. and Zaleski, J. (2006) Structural and Electronic Contributions to Hyperpolarizability in Methyl p-Hydroxy Benzoate. Journal of Molecular Structure, 785, 43-53.
[45] Sun, Y.X., Hao, Q.L., Yu, Z.X., Wei, W.X., Lu, L.D. and Wang, X. (2009) Experimental and Density Functional Studies on 4-(4-Cyanobenzylideneamino) Antipyrine. Molecular Physics, 107, 223-235.
http://dx.doi.org/10.1080/00268970902769471
[46] Ahmed, A.B., Feki, H., Abid, Y., Boughzala, H., Minot, C. and Mlayah, A. (2009) Crystal Structure, Vibrational Spectra and Theoretical Studies of L-Histidinium Dihydrogen Phosphate-Phosphoric Acid. Journal of Molecular Structure, 920, 1-7.
[47] Abraham, J.P., Sajan, D., Shethigar, V., Dharmaprakash, S.M., Nemec, I., Joe, I.H. and Jayakumar, V.S. (2009) Efficient π-Electron Conjugated Push-Pull Nonlinear Optical Chromophore 1-(4-Methoxyphenyl)-3-(3,4-dimethoxyphenyl)- 2-propen-1-one: A Vibrational Spectral Study. Journal of Molecular Structure, 917, 27-36.
[48] Sagdinc, S.G. and Esme, A. (2010) Theoretical and Vibrational Studies of 4,5-Diphenyl-2-2 Oxazole Propionic Acid (Oxaprozin). Spectrochimica Acta Part A, 75, 1370-1376.
http://dx.doi.org/10.1016/j.saa.2010.01.004
[49] Ahmed, A.B., Feki, H., Abid, Y., Bonghzala, H. and Minot, C. (2010) Crystal Studies, Vibrational Spectra and Non-Linear Optical Properties of L-Histidine Chloride Monohydrate. Spectrochimica Acta Part A, 75, 293-298.
http://dx.doi.org/10.1016/j.saa.2009.10.026

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.