Share This Article:

Control of Instable Chaotic Small Power System

DOI: 10.4236/jpee.2015.32001    2,608 Downloads   3,094 Views  

ABSTRACT

In this paper, we aim to control an instable chaotic oscillation in power system that is considered to be small system by using a linear state feedback controller. First we will analyze the stability of the mentioned power system by means of modern nonlinear theory (Bifurcation and Chaos). Our model is based on a three bus power system that consists of multi generators containing both dynamic and static loads. They are considered to be in the form of an induction motor in parallel with a capacitor, as well as a combination of constant power along with load impedance, PQ. We consider the load reactive power as the control parameter. At this stage, after changing the control parameter, the study showed that the system is experiencing a subcritical Hopf bifurcation point. This leads to a chaos within the system period doubling path. We then discuss the system controllability and present that the all chaotic oscillations fade away through the linear controller that we impose on the system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shariff, S. and Harb, A. (2015) Control of Instable Chaotic Small Power System. Journal of Power and Energy Engineering, 3, 1-7. doi: 10.4236/jpee.2015.32001.

References

[1] Kundur, P. (1994) Power System Stability and Control. Electric Power Research Institute, (McGraw-Hill, Inc.), New York.
[2] Kwatny, H.G., Pasrija, A.K. and Bahar, L.Y. (1986) Static Bifurcation in Electric Power Networks: Loss of SteadyState Stability and Voltage Collapse. IEEE Transactions on Circuit and Systems, 33, 981-991.
http://dx.doi.org/10.1109/TCS.1986.1085856
[3] Schlueter, R.A., Costi, A.G., Sekerke, J.E. and Forgey, H.L. (1988) Voltage Stability and Security Assessment. EPRI Final Report El-5967 on Project RP 1999-8.
[4] Thomas, R.J. and Tiraunchit, A. (1987) Dynamic Voltage Instability. Proceedings of the 26th IEEE Conference on Control and Decision, Los Angeles, 9-11 December 1987, 53-58.
[5] Abed, E.H. and Varaiya, P.P. (1989) Nonlinear Oscillations in Power Systems. International Journal of Electrical Power & Energy Systems, 6, 37-43.
http://dx.doi.org/10.1016/0142-0615(84)90034-6
[6] Abed, E.H., Alexander, J.C., Wang, H., Hamdan, A.H. and Lee, H.C. (1992) Dynamic Bifurcation in a Power System Model Exhibiting Voltage Collapse. Proceedings of the 1992 IEEE International Symposium on Circuit and Systems, San Diego, 10-13 May 1992, 2509-2512.
[7] Rajagopalan, C., Sauer, P.W. and Pai, M.A. (1989) Analysis of Voltage Control System Exhibiting Hopf Bifurcation. Proceedings of 28th IEEE Conference on Decision and Control, Tampa, 13-15 December 1989, 332-335.
[8] Dobson, I., Chiang, H.-D., Thorp, J.S. and Fekih-Ahmed, L. (1988) A Model of Voltage Collapse in Electric Power Systems. Proceedings of the 27th IEEE Conference on Decision and Control, Austin, 7-9 December 1988, 2104-2109.
[9] Nayfeh, A.H., Harb, A.M. and Chin, C. (1996) Bifurcation in a Power System Model. International Journal of Bifurcation and Chaos, 6, 497-512.
[10] Abed, E.H. and Fu, J.H. (1986) Local Feedback Stabilization and Bifurcation Control, I. Hopf Bifurcation. System and Control Letters, 7, 11-17.
http://dx.doi.org/10.1016/0167-6911(86)90095-2
[11] Abed, E.H. and Fu, J.H. (1987) Local Feedback Stabilization and Bifurcation Control, II. Stationary Bifurcation. System and Control Letters, 8, 467-473.
http://dx.doi.org/10.1016/0167-6911(87)90089-2
[12] Chiang, H.-D., Dobson, I., Thomas, R.J., Thorp, J.S. and Fekih-Ahmed, L. (1990) On Voltage Collapse in Electric Power Systems. IEEE Transactions on Power Systems, 5, 601-611.
http://dx.doi.org/10.1109/59.54571
[13] Baillieul, J., Brockett, R. and Washburn, R.B. (1980) Chaotic Motion in Nonlinear Feedback Systems. IEEE Transactions on Circuits and Systems, 27, 990-997.
http://dx.doi.org/10.1109/TCS.1980.1084739
[14] Chang, H.-C. and Chen, L.-H. (1984) Bifurcation Characteristics of Nonlinear Systems under Conventional PID Control. Chemical Engineering Science, 39, 1127-1142.
http://dx.doi.org/10.1016/0009-2509(84)85075-7
[15] Harb, A.M., Nayfeh, A.H., Chin, C. and Mili, L. (1999) On the Effects of Machine Saturation on Subsynchronous Oscillations in Power Systems. Electric Machines and Power Systems Journal, 28, 1019-1035.
[16] Wang, H.O. and Abed, E.H. (1993) Control of Nonlinear Phenomena at the Inception of Voltage Collapse. Proceedings of the 1993 American Control Conference, San Francisco, 2-4 June 1993, 2071-2075.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.