Share This Article:

Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality

Abstract Full-Text HTML Download Download as PDF (Size:3801KB) PP. 56-78
DOI: 10.4236/nr.2015.61007    2,528 Downloads   3,172 Views   Citations

ABSTRACT

Providing a sustainable and reliable supply of raw materials at economic prices has become essential to industrialized economies. Therefore, the need for both economical and sustainable methods and strategies for the management of raw materials has been postulated to enable companies and economies to counteract dramatic effects of supply disruptions, or at least to provide early warnings. The relevant studies assign generic weights to different driving factors and therefrom derive criticality indexes. However, it often remains open how to interpret the resulting measures and how to apply them practically. Here we show that based on current commodity key figures, it is possible to empirically determine the risk for future price increases and fluctuations. Thus, we can identify future supply risks and incorporate their patterns into an empirically calibrated criticality measurement. To this end, we apply the well-known compounding framework used by many companies for their financial planning, calculating net present values and volatility from the predicted future price development. To calibrate each resource specific model, we perform extended regression analyses on our compounded criticality index from time series of 42 (out of about 60 industrially relevant) chemical elements. The analysis thereby covers 9 driving factors for criticality and a 40-year time span. Our results suggest a fundamental modification of current practices for criticality assessment, in particular by scaling the criticality measure to correspond with the net present value of future commodity expenses and future volatility.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mayer, H. and Gleich, B. (2015) Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality. Natural Resources, 6, 56-78. doi: 10.4236/nr.2015.61007.

References

[1] ICSG (2012) The World Copper Factbook 2012 International. The International Copper Study Group, Lisbon.
[2] National Research Council (2008) Minerals, Critical Minerals, and the USA Economy. The National Academies Press.
[3] Pfleger, P.K.L., Bardt, H. and Reller, A. (2009) Rohstoffsituation Bayern: Keine Zukunft ohne Rohstoffe. IW Consult, Munich.
[4] Achzet, B., Zepf, V., Meissner, S. and Reller, A. (2010) Strategies for a Responsible Handling of Metals and Their Resources. Chemie Ingenieur Technik, 82, 1913-1924.
[5] EC (European Commission) (2010) Critical Raw Materials for the EU. Report of the Ad-Hoc Working Group on Defining Critical Raw Materials. EC, Brussels.
[6] Rosenau-Tornow, D., Buchholz, P., Riemann, A. and Wagner, M. (2009) Assessing the Long-Term Supply Risks for Mineral Raw Materials—A Combined Evaluation of Past and Future Trends. Resources Policy, 34, 161-175.
http://dx.doi.org/10.1016/j.resourpol.2009.07.001
[7] Erdmann, L. and Graedel, T.E. (2011) The Criticality of Non-Fuel Minerals: A Review of Major Approaches and Analyses. Environmental Science & Technology, 45, 7620-7630.
http://dx.doi.org/10.1021/es200563g
[8] Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P. and Wanner, B. (2010) Critical Materials Strategy. USA Department of Energy, Washington DC.
[9] Graedel, T.E., et al. (2012) Methodology of Metal Criticality Determination. Environmental Science & Technology, 46, 1063-1070.
http://dx.doi.org/10.1021/es203534z
[10] Gleich, B., Achzet, B., Mayer, H. and Rathgeber, A. (2013) An Empirical Approach to Determine Specific Weights of Driving Factors for the Price of Commodities? A Contribution to the Measurement of the Economic Scarcity of Minerals and Metals. Resources Policy, 38, 350-362.
http://dx.doi.org/10.1016/j.resourpol.2013.03.011
[11] Smith, M. (2005) European Strategic Metals & Industrial Minerals—Knowledge Gaps Risks & Vulnerabilities. Gecko Environment.
[12] Behrendt, S., Scharp, M., Kahlenborn, W., Feil, M., Dereje, C., Bleischwitz, R. and Delzeit, R. (2007) Seltene Metalle -Mabnahmen und Konzepte zur Losung des Problems konfliktverscharfender Rohstoffausbeutung am Beispiel Coltan. Umwelt Bundes Amt.
[13] Wouters, H. and Bol, D. (2009) Material Scarcity. Materials Innovation Institute.
[14] Massachusetts Institute of Technology (2010) Critical Elements for New Energy Technologies. MIT, Cambridge.
[15] Geological Survey of Finland (2010) Finland’s Minerals Strategy.
www.mineraalistrategia.fi
[16] Waeger, P., Lang, D., Bleischwitz, R., Hagelüken, C., Meissner, S., Reller, A. and Wittmer, D. (2010) Rare Metals— Raw Materials for Technologies of the Future. Swiss Academy of Engineering Sciences.
[17] Behrent, S., Erdman, L. and Feil, M. (2011) Kritische Rohstoffe für Deutschland—Identifikation aus Sicht deutscher Unternehmen wirtschaftlich bedeutsamer mineralischer Rohstoffe, deren Versorgungslage sich mittel-bis langfristig als kritisch erweisen konnte. KfW Bankengruppe.
[18] Duclos, S.J., Otto, J.P. and Konitzer, D.G. (2010) Design in an Era of Constrained Resources. Mechanical Engineering, 132, 36-40.
[19] Thomason, J.S., Atwell, R.J., Bajraktari, Y., Bell, J.P., Barnett, D.S., Karvonides, N.S., Niles, M.F. and Schwartz, E.L. (2008) From National Defense Stockpile (NDS) to Strategic Materials Security Program (SMSP): Evidence and Analytic Support. Institute for Defense Analyses (IDA), Alexandria, VA.
[20] Frondel, M., Grosche, P., Huchtemann, D., Oberheitmann, A., Petersand, J., Angerer, G., Buchholz, C.S., Rohling, S.P. and Wagner, M. (2007) Trends der Angebotsund Nachfragesituation bei mineralischen Rohstoffen. Rheinisch-Westfalisches Institut für Wirtschaftsforschung (RWI Essen), Fraunhofer-Institut für Systemund Innovationsforschung (ISI), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR).
[21] Tilton, J. (2002) On Borrowed Time? Assessing the Threat of Mineral Depletion. RFF Press Series, Resources for the Future, Washington DC.
[22] Tilton, J.E. (2009) Is Mineral Depletion a Threat to Sustainable Mining?
[23] Alonso, E., Gregory, J., Field, F. and Kirchain, R. (2008) Material Availability and the Supply Chain: Risks, Effects, and Responses. Environmental Science & Technology, 19, 6649-6656.
[24] Chambers, M.J. and Bailey, R.E. (1996) A Theory of Commodity Price Fluctuations. Journal of Political Economy, 104, 924-957.
http://dx.doi.org/10.1086/262047
[25] Svedberg, P. and Tilton, J.E. (2006) The Real, Real Price of Nonrenewable Resources: Copper 1870-2000. World Development, 34, 501-519.
http://dx.doi.org/10.1016/j.worlddev.2005.07.018
[26] Hotelling, H. (1931) The Economics of Exhaustible Resources. Journal of Political Economy, 39, 137-175.
http://dx.doi.org/10.1086/254195
[27] Krautkraemer, J.A. (1998) Nonrenewable Resource Scarcity. Journal of Economic Literature, 36, 2065-2107.
[28] Jarque, C.M. and Bera, A.K. (1980) Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Economics Letters, 6, 255-259.
http://dx.doi.org/10.1016/0165-1765(80)90024-5
[29] Breusch, T.S. and Pagan, A.R. (1979) A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica, 47, 1287-1294.
http://dx.doi.org/10.2307/1911963
[30] Savin, N.E. and White, K.J. (1977) The Durbin-Watson Test for Serial Correlation with Extreme Sample Sizes or Many Regressors. Econometric, 45, 1989-1996.
http://dx.doi.org/10.2307/1914122
[31] Marquardt, D.W. (1970) Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12, 591-612.
http://dx.doi.org/10.2307/1267205
[32] Lien, D.H.D. (1987) The Inventory Effect in Commodity Futures Markets: An Empirical Study. Journal of Futures Markets, 7, 637-652.
http://dx.doi.org/10.1002/fut.3990070604
[33] Pindyck, R.S. (2001) The Dynamics of Commodity Spot and Futures Markets: A Primer. The Energy Journal, 22, 1-30.
[34] Carpantier, J.F. and Samkharadze, B. (2012) The Asymmetric Commodity Inventory Effect on the Optimal Hedge Ratio. Journal of Futures Markets, 33, 1096-9934.
[35] Langhammer, D. (2010) An Empirical Analysis of Structural Forces in Refractory Metal Markets. Dissertation, Augsburg University, Augsburg.
[36] Croft, L. (2010) Nobel Prize 2010: Prestige for Palladium. Nature Chemistry, 2, 1009.
[37] Chen, M.-H. (2010) Understanding World Metals Prices—Returns, Volatility and Diversification. Resources Policy, 35, 127-140.
http://dx.doi.org/10.1016/j.resourpol.2010.01.001
[38] Moon, C., Whateley, M. and Evans, A. (2006) Introduction to Mineral Exploration. John Wiley & Sons, New York.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.