Share This Article:
Review Paper

Plasma Virtual Actuators for Flow Control

Abstract Full-Text HTML XML Download Download as PDF (Size:5875KB) PP. 22-34
DOI: 10.4236/jfcmv.2015.31003    4,279 Downloads   5,453 Views   Citations

ABSTRACT

Dielectric-barrier-discharge (DBD) plasma actuators are all-electric devices with no moving parts. They are made of a simple construction, consisting only of a pair of electrodes sandwiching a dielectric sheet. When AC voltage is applied, air surrounding the upper electrode is ionized, which is attracted towards the charged dielectric surface to form a wall jet. Control of flow over land and air vehicles as well as rotational machinery can be carried out using this jet flow on demand. Here we review recent developments in plasma virtual actuators for flow control that can replace conventional actuators for better aerodynamic performance.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Choi, K. , Jukes, T. , Whalley, R. , Feng, L. , Wang, J. , Matsunuma, T. and Segawa, T. (2015) Plasma Virtual Actuators for Flow Control. Journal of Flow Control, Measurement & Visualization, 3, 22-34. doi: 10.4236/jfcmv.2015.31003.

References

[1] Moreau, E. (2007) Airflow Control by Non-Thermal Plasma Actuators. Journal of Physics D: Applied Physics, 40, 605-636. http://dx.doi.org/10.1088/0022-3727/40/3/S01
[2] Corke, T.C., Enloe, C.L. and Wilkinson, S.P. (2010) Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annual Review of Fluid Mechanics, 42, 505-529.
http://dx.doi.org/10.1146/annurev-fluid-121108-145550
[3] Wang, J.J., Choi, K.-S., Feng, L.-H., Jukes, T.N. and Whalley, R.D. (2013) Recent Developments in DBD Plasma Flow Control. Progress in Aerospace Sciences, 62, 52-78.
http://dx.doi.org/10.1016/j.paerosci.2013.05.003
[4] Jukes, T. and Choi, K.-S. (2013) On the Formation of Streamwise Vortices by Plasma Vortex Generators. Journal of Fluid Mechanics, 733, 370-393. http://dx.doi.org/10.1017/jfm.2013.418
[5] Jukes, T. and Choi, K.-S. (2012) Dielectric-Barrier-Discharge Vortex Generators: Characterization and Optimization for Flow Separation Control. Experiments in Fluids, 52, 329-345.
http://dx.doi.org/10.1007/s00348-011-1213-0
[6] Jukes, T., Segawa, T. and Furutani, H. (2013) Flow Control on a NACA 4418 Using Dielectric-Barrier-Discharge Vortex Generators. AIAA Journal, 51, 452-464. http://dx.doi.org/10.2514/1.J051852
[7] Wetzel, K.K. and Farokhi, S. (1995) Influence of Vortex Generators on NREL S807 Airfoil Aerodynamic Characteristics and Wind Turbine Performance. Wind Engineering, 19, 157-165.
[8] Whalley, R.D., Debien, A., Podlinski, J., Jukes, T.N., Choi, K.-S., Benard, N., Moreau, E., Berendt, A. and Mizeraczyk, J. (2013) Trailing-Edge Separation Control of a NACA 0015 Airfoil Using Dielectric-Barrier-Discharge Plasma Actuators. ERCOFTAC Bulletin, 94, 35-40.
[9] Jukes, T., Segawa, T. and Furutani, H. (2012) Active Flow Separation Control on a NACA 4418 Using DBD Vortex Generators and FBG Sensors. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-1139.
[10] Wang, J.J., Li, Y.C. and Choi, K.-S. (2008) Gurney Flap-Lift Enhancement, Mechanisms and Applications. Progress in Aerospace Sciences, 44, 22-47. http://dx.doi.org/10.1016/j.paerosci.2007.10.001
[11] Zhang, P.F., Liu, A.B. and Wang, J.J. (2009) Aerodynamic Modification of a NACA 0012 Airfoil by Trailing-Edge Plasma Gurney Flap. AIAA Journal, 47, 2467-2474. http://dx.doi.org/10.2514/1.43379
[12] Li, Y.C., Wang, J.J. and Zhang, P.F. (2002) Effect of Gurney Flaps on a NACA 0012 Airfoil. Flow, Turbulence Combust, 68, 27-39. http://dx.doi.org/10.1023/A:1015679408150
[13] Feng, L.H., Jukes, T.N., Choi, K.-S. and Wang, J.J. (2012) Flow Control over a NACA 0012 Airfoil Using Dielectric- Barrier-Discharge Plasma Actuator with a Gurney Flap. Experiments in Fluids, 52, 1533-1546. http://dx.doi.org/10.1007/s00348-012-1263-y
[14] Feng, L.H., Wang, J.J. and Choi, K.-S. (2014) A Novel Concept on the Plasma Gurney Flap. Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, 7-12 September 2014, 1-7.
[15] Karniadakis, G.E. and Choi, K.-S. (2003) Mechanisms on Transverse Motions in Turbulent Wall Flows. Annual Review of Fluid Mechanics, 35, 45-62. http://dx.doi.org/10.1146/annurev.fluid.35.101101.161213
[16] Du, Y. and Karniadakis, G.E. (2000) Suppressing Wall Turbulence by Means of a Transverse Travelling Wave. Science, 288, 1230-1234. http://dx.doi.org/10.1126/science.288.5469.1230
[17] Du, Y., Symeondis, Y. and Karniadakis, G.E. (2002) Drag Reduction in Wall-Bounded Turbulence via a Transverse Travelling Wave. Journal of Fluid Mechanics, 457, 1-34.
http://dx.doi.org/10.1017/S0022112001007613
[18] Breuer, K., Park, J. and Henoch, C. (2004) Actuation and Control of a Turbulent Channel Flow Using Lorentz Forces. Physics of Fluids, 16, 897-907. http://dx.doi.org/10.1063/1.1647142
[19] Xu, P. and Choi, K.-S. (2006) Boundary-Layer Control for Drag Reduction by Lorentz Forcing. Proceedings of the IUTAM Symposium on Flow Control and MEMS, London, 19-22 September 2006.
[20] Zhao, H., Wu, J.Z. and Luo, J.S. (2004) Turbulent Drag Reduction by Traveling Wave of Flexible Wall. Fluid Dynamics Research, 34, 175-198. http://dx.doi.org/10.1016/j.fluiddyn.2003.11.001
[21] Itoh, M., Tamano, S., Yokota, K. and Tanigichi, S. (2006) Drag Reduction in a Turbulent Boundary Layer on a Flexible Sheet Undergoing a Spanwise Travelling Wave Motion. Journal of Turbulence, 7, 1-17.
http://dx.doi.org/10.1080/14685240600647064
[22] Itoh, M. and Tamano, S. (2012) Drag Reduction in Turbulent Boundary Layers by Spanwise Travelling Waves with Wall Deformation. Journal of Turbulence, 13, 1-26.
[23] Whalley, R.D. and Choi, K.-S. (2014) Turbulent Boundary-Layer Control with Plasma Spanwise Travelling Waves. Experiments in Fluids, 55, 1796. http://dx.doi.org/10.1007/s00348-014-1796-3
[24] Jeong, J. and Hussain, F. (1995) On the Identification of a Vortex. Journal of Fluid Mechanics, 285, 69-94. http://dx.doi.org/10.1017/S0022112095000462
[25] Roth, J.R., Sherman, D.M. and Wilkinson, S.P. (1998) Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge. AIAA Paper 98-0328.
[26] Segawa, T., Jukes, T. and Yuki, Y. (2012) Properties of Flow Induced by String-Type Plasma Actuators. Nagare, 31, 479-482.
[27] Segawa, T., Jukes, T., Yuki, Y., Maeda, S., Maeda, T., Ogata, S. and Takekawa, S. (2013) Feedback Control of Flow Separation on NACA 0024 Airfoil under Periodic Wall Oscillation by Means of DBD Plasma Actuator and FBG Sensor. AIAA Paper 2013-1117.
[28] Van Ness II, D.K., Corke, T.C. and Morris, S.C. (2006) Turbine Tip Clearance Flow Control Using Plasma Actuator. AIAA Paper 2006-0021.
[29] Saddoughi, S., Bennett, G., Boespflug, M., Puterbaugh, S.L. and Wadia, A.R. (2014) Experimental Investigation of Tip Clearance Flow in a Transonic Compressor with and without Plasma Actuators. Proceedings of the ASME Turbo Expo 2014, GT2014-25294.
[30] Matsunuma, T. (2006) Effects of Reynolds Number and Freestream Turbulence on Turbine Tip Clearance Flow. Transactions of the American Society of Mechanical Engineers: Journal of Turbomachinery, 128, 166-177.
[31] Sjolander, S.A. (1997) Overview of Tip-Clearance Effects in Axial Turbines. Von Karman Institute for Fluid Dynamics, Lecture Series 1997-01: Secondary and Tip-Clearance Flows in Axial Turbines, 1-29.
[32] Matsunuma, T. and Segawa, T. (2014) Active Tip Clearance Flow Control for an Axial-Flow Turbine Rotor Using Ring-Type Plasma Actuators. Proceedings of the ASME Turbo Expo 2014, GT2014-26390.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.