Share This Article:

Genetic Engineering of Field, Industrial and Pharmaceutical Crops

Abstract Full-Text HTML XML Download Download as PDF (Size:2791KB) PP. 3974-3993
DOI: 10.4236/ajps.2014.526416    6,220 Downloads   7,149 Views   Citations

ABSTRACT

Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic transformation have opened new vistas whereby functional genes, not commonly present in a particular species can be added from other species. The traits incorporated into the genetically engineered plants in the beginning were confined to those governed by dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time now also permit the transfer of complexly inherited traits such as drought and cold tolerance. Transgenic technology is also useful in understanding gene expression and metabolic pathways which can then be used to harness the full genomic potential of the plant. This review presents a narrative on development of transgenics and their use for the improvement of field, industrial and pharmaceuticals crops. In addition, discussions are made on current status on genetically modified crops, hurdles to genetic engineering, overcoming strategies and future scope.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Singh, H. and Singh, B. (2014) Genetic Engineering of Field, Industrial and Pharmaceutical Crops. American Journal of Plant Sciences, 5, 3974-3993. doi: 10.4236/ajps.2014.526416.

References

[1] James, C. (2013) Global Status of Commercialized Biotech/GM Crops: 2013. ISAAA Brief No. 46, ISAAA, Ithaca, NY.
[2] Carozzi, N. and Koziel, M.G. (1997) Transgenic Maize Expressing a Bacillus thuringiensis Insecticidal Protein for Control of European Corn Borer. In: Carozzi, N. and Koziel, M.G., Eds., Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis, London, 63-74.
[3] Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.S., Greenplate, J.T. and Fischhoff, D.A. (1990) Insect Resistant Cotton Plants. Nature Biotechnology, 8, 939-943.
http://dx.doi.org/10.1038/nbt1090-939
[4] Perlak, F.J., Stone, T.B., Muskopf, Y.M., Peterson, L.J., Parker, G.B., McPherson, S.A., et al. (1993) Genetically Improved Potatoes: Protection from Damage by Colorado Potato Beetles. Plant Molecular Biology, 22, 313-321. http://dx.doi.org/10.1007/BF00014938
[5] Padgette, S.R., Kolacz, K.H., Delannay, X., Re, D.B., LaVallee, B.J., Tinius, C.N., et al. (1995) Development, Identification, and Characterization of Glyphosate-Tolerant Soybean Line. Crop Science, 35, 1451-1461. http://dx.doi.org/10.2135/cropsci1995.0011183X003500050032x
[6] Naranjo, M.A. and Vicente, O. (2008) Transgenic Plants for the Third Millennium Agriculture. Bulletin of UASVM, Horticulture, 65, 38-43.
[7] Clark, D., Klee, H. and Dandekar, A. (2004) Despite Benefits, Commercialization of Transgenic Horticultural Crops Lags. California Agriculture, 58, 89-98. http://dx.doi.org/10.3733/ca.v058n02p89
[8] Monsanto (2004)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=GTSB77&frmat=LONG
[9] Bayer Crop Science (Aventis CropScience(AgrEvo) (1996)
http://ceramc.org/index.php/GmCropDatabaseEvent/event/60
[10] Romer, S., Fraser, J., Kiano, C., Shipton, C., Misawa, W., Schuch, W. and Bramley, P.M. (2000) Elevation of the Provitamin A Content of Transgenic Tomato Plants. Nature Biotechnology, 18, 666-669. http://dx.doi.org/10.1038/76523
[11] Kinney, A.J. (1996) Designer Oils for Better Nutrition. Nature Biotechnology, 14, 946.
http://dx.doi.org/10.1038/nbt0896-946
[12] Lui, K.S. and Brown, E.A. (1996) Enhancing Vegetable Oil Quality through Plant Breeding and Genetic Engineering. Food Technology, 50, 67-71.
[13] Kim, C.S., Kamiya, S., Sato, T., Utsumi, S. and Kito, M. (1990) Improvement of Nutritional Value and Functional Properties of Soybean Glycinin by Protein Engineering. Protein Engineering, Design and Selection, 3, 725-731. http://dx.doi.org/10.1093/protein/3.8.725
[14] Malik, M.K., Solvin, J.P., Hwang, C.H. and Zimmerman, J.L. (1999) Modified Expression of a Carrot Small Heat Shock Protein Genes, Hsp17.7, Results in Increased or Decreased Thermo Tolerance. Plant Journal, 20, 89-99. http://dx.doi.org/10.1046/j.1365-313X.1999.00581.x
[15] Dow Agro Sciences LLC (2004)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=281-24-236
[16] Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., et al. (2000) Molecular Strategies for Improving Waterlogging Tolerance in Plants. Journal of Experimental Botany, 51, 89-97. http://dx.doi.org/10.1093/jexbot/51.342.89
[17] BASF (2005)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=30&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[18] Knutzon, D. (1999) Polyunsaturated Fatty Acids in Plants (International Patent Publication No. WO 99/64614, Date Filed: 6/10/1999). World Intellectual Property Organization, Geneva.
[19] BASF (2004)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=49&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[20] University of Saskatchewan, Crop Dev. Centre (1999)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=4&gType%5B%5D=&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[21] Bayer CropScience (Aventis CropScience(AgrEvo) (1998)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=T45+%28HCN28%29
[22] Monsanto (2004)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=18&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[23] Hightower, R., Baden, C., Penzes, E., Lund, P. and Dunsmuir, P. (1991) Expression of Antifreeze Proteins in Transgenic Plants. Plant Molecular Biology, 17, 1013-1021. http://dx.doi.org/10.1007/BF00037141
[24] McKersie, B.D., Bowley, S.R. and Jones, K.S. (1999) Winter Survival of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiology, 119, 839-848. http://dx.doi.org/10.1104/pp.119.3.839
[25] McKersie, B.D., Chen, Y., de Beus, M., Bowley, S.R., Bowler, C., Inze, D., D’Halluin, K. and Botterman, J. (1993) Superoxide Dismutase Enhances Tolerance for Freezing Stress in Transgenic Alfalfa (Medicago sativa L.). Plant Physiology, 103, 1155-1163. http://dx.doi.org/10.1104/pp.103.4.1155
[26] BASF (2002)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=CL121%2C+CL141%2C+CFX51
[27] Zheng, A., Sumi, K., Tanaka, K. and Murai, N. (1995) The Bean Seed Storage Protein β-Phaseolin Is Synthesized, Processed and Accumulated in the Vacuolar Type-II Protein Bodies of Transgenic Rice Endosperm. Plant Physiology, 109, 777-786.
[28] Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.H.D. and Wu, R. (1996) Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficits and Salt Stress in Transgenic Rice. Plant Physiology, 110, 249-257.
[29] Qunimio, C.A., Torrizo, L.B., Setter, T.L., Ellis, M., Grover, A., Abrigo, E.M., et al. (2000) Enhancement of Submergence Tolerance in Transgenic Rice Overproducing Pyruvate Decarboxylase. Journal of Plant Physiology, 156, 516-521. http://dx.doi.org/10.1016/S0176-1617(00)80167-4
[30] Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., et al. (2006) Sub1A Is an Ethylene-Response-Factor-Like Gene that Confers Submergence Tolerance to Rice. Nature, 442, 705-708. http://dx.doi.org/10.1038/nature04920
[31] Hirano, H.Y. and Sano, Y. (1998) Enhancement of Wx Gene Expression and the Accumulation of Amylose in Response to Cool Temperatures during Seed Development in Rice. Plant & Cell Physiology, 39, 807-812. http://dx.doi.org/10.1093/oxfordjournals.pcp.a029438
[32] Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A. and Takabe, T. (2000) Enhance Tolerance to Salt Stress in Transgenic Rice over Expression Chloroplast Glutamine Synthetase. Plant Molecular Biology, 43, 103-111. http://dx.doi.org/10.1023/A:1006408712416
[33] Conway, G. and Toenniessen, G. (1999) Feeding the World in the Twenty-First Century. Nature, 402, C55-C58.
http://dx.doi.org/10.1038/35011545
[34] BASF (2007) http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=BW7
[35] Monsanto (2004)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=MON71800
[36] Shewry, P., Tatham, A., Barro, F., Barcelo, P. and Lazzeri, P. (1995) Biotechnology of Breadmaking: Unraveling and Manipulating the Multi-Protein Gluten Complex. Nature Biotechnology, 13, 1185-1190. http://dx.doi.org/10.1038/nbt1195-1185
[37] Blechl, A. and Anderson, O. (1996) Expression of a Novel High-Molecular-Weight Glutenin Subunit Gene in Transgenic Wheat. Nature Biotechnology, 14, 875-879. http://dx.doi.org/10.1038/nbt0796-875
[38] Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, F.R., Lazzeri, P., et al. (1997) Transformation of Wheat with High Molecular Weight Subunit Genes Results in Improved Functional Properties. Nature Biotechnology, 15, 1295-1299.
http://dx.doi.org/10.1038/nbt1197-1295
[39] Shewry, P., Tatham, A. and Lazzeri, P. (1997) Biotechnology of Wheat Quality. Journal of the Science of Food and Agriculture, 73, 397-406.
http://dx.doi.org/10.1002/(SICI)1097-0010(199704)73:4<397::AID-JSFA758>3.0.CO;2-Q
[40] Vasil, I. and Anderson, O. (1997) Genetic Engineering of Wheat Gluten. Trends in Plant Science, 2, 292-297. http://dx.doi.org/10.1016/S1360-1385(97)89950-5
[41] Pellegrineschi, A., Reynolds, M., Pacheco, M., Bitro, R.M., Almeraya, R., Yamaguchi-Shinazaki, K. and Hoisington, D. (2004) Stress Induced Expression in Wheat of the Arabidopsis thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions. Genome, 47, 493-500.
http://dx.doi.org/10.1139/g03-140
[42] Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.H.D. and Qu, R.D. (2000) Improved Biomass Productivity and Water Use Efficiency under Deficit Conditions in Transgenic Wheat Constitutively Expressing the Barley HVA1 Gene. Plant Science, 155, 1-9.
http://dx.doi.org/10.1016/S0168-9452(99)00247-2
[43] Syngenta Seeds, Inc. (1995)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=176
[44] Syngenta Seeds, Inc. (1996)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=GA21
[45] Syngenta Seeds, Inc. (2007)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=MIR604
[46] Shou, H., Bordallo, P. and Wang, K. (2004) Expression of the Nicotiana Protein Kinase (NPK1) Enhanced Drought Tolerance in Transgenic Maize. Journal of Experimental Botany, 55, 1013-1019. http://dx.doi.org/10.1093/jxb/erh129
[47] Xiao, B.Z., Chen, X., Xiang, C.B., Tang, N., Zhang, Q.F. and Xiong, L.Z. (2009) Evaluation of Seven Function-Known Candidate Genes for Their Effects on Improving Drought Resistance of Transgenic Rice under Field Conditions. Molecular Plant, 2, 73-83.
http://dx.doi.org/10.1093/mp/ssn068
[48] Arencibia, A., Vázquez, R.I., Prieto, D., Téllez, P., Carmona, E.R., Coego, A.H.L., et al. (1997) Transgenic Sugarcane Plants Resistant to Stem Borer Attack. Molecular Breeding, 3, 247-255. http://dx.doi.org/10.1023/A:1009616318854
[49] Braga, D.P.V., Arrigoni, E.D.B., Burnquist, W.L., Silva Filho, M.C., Ulian, E.C. and Hogarth, D.M. (2001) A New Approach for Control of Diatraea saccharalis (Lepidoptera: Crambidae) through the Expression of an Insecticidal CryIa(b) Protein in Transgenic Sugarcane. Proceedings of International Society of Sugarcane Technologists, 24, 331-336.
[50] Braga, D.P.V., Arrigoni, E.D.B., Silva Filho, M.C. and Ulian, E.C. (2003) Expression of the Cry1Ab Protein in Genetically Modified Sugarcane for the Control of Diatraea saccharalis (Lepidoptera: Crambidae). Journal of New Seeds, 5, 209-221. http://dx.doi.org/10.1300/J153v05n02_07
[51] Weng, L.X., Deng, H.H., Xu, J.L., Li, Q., Wang, L.H., Jiang, Z.D., et al. (2006) Regeneration of Sugarcane Elite Breeding Lines and Engineering of Strong Stem Borer Resistance. Pest Management Science, 62, 178-187. http://dx.doi.org/10.1002/ps.1144
[52] Kalunke, R.M., Kolge, A.M., Babu, K.H. and Prasad, D.T. (2009) Agrobacterium Mediated Transformation of Sugarcane for Borer Resistance Using Cry 1Aa3 Gene and One-Step Regeneration of Transgenic Plants. Sugar Tech, 11, 355-359. http://dx.doi.org/10.1007/s12355-009-0061-1
[53] Arvinth, S., Arun, S., Selvakesavan, R.K., Srikanth, J., Mukunthan, N., Kumar, P.A., et al. (2010) Genetic Transformation and Pyramiding of Aprotinin-Expressing Sugarcane with cry1Ab for Shoot Borer (Chilo infuscatellus) Resistance. Plant Cell Reports, 29, 383-395.
http://dx.doi.org/10.1007/s00299-010-0829-5
[54] DNA Plant Technology Corporation (1994)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=1345-4
[55] Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A. and Verma, D.P.S. (1995) Overexpression of δ-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiology, 108, 1387-1394.
[56] Asgrow (USA) Seminis Vegetable Inc. (1994)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=CZW-3
[57] Monsanto (1996)
http://cera-gmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=ATBT04-6%2C+ATBT04-27%2C+ATBT04-30%2C+ATBT04-31%2C+ATBT
04-36%2C+SPBT02-5%2C+SPBT02-7
[58] Visser, R., Somhorst, I., Kuipers, G., Ruys, N., Feenstra, W. and Jacobsen, E. (1991) Inhibition of the Expression of the Gene for Granule-Bound Starch Synthase in Potato by Antisense Constructs. Molecular and General Genetics, 225, 289-296. http://dx.doi.org/10.1007/BF00269861
[59] Pennarubia, L., Kim, R., Giovannoni, J., Kim, S. and Fischer, R. (1992) Production of the Sweet Protein Monellin in Transgenic Plants. Nature Biotechnology, 10, 561-564.
http://dx.doi.org/10.1038/nbt0592-561
[60] Holmberg, N. and Bulow, L. (1998) Improving Stress Tolerance in Plants by Gene Transfer. Trends in Plant Science, 3, 61-66. http://dx.doi.org/10.1016/S1360-1385(97)01163-1
[61] Ahn, Y.J. and Zimmerman, L. (2006) Introduction of Carrot HSP17.7 into Potato (Solanum tuberosum L.) Enhances Cellular Membrane Stability and Tuberization in Vitro. Plant, Cell and Environment, 29, 95-104. http://dx.doi.org/10.1111/j.1365-3040.2005.01403.x
[62] Visser, R., Suurs, L., Steeneken, P. and Jacobsen, E. (1994) Some Physicochemical Properties of Amylose-Free Potato Starch. Starch/St?rke, 49, 443-448. http://dx.doi.org/10.1002/star.19970491104
[63] Katsube, T., Kurisaka, N., Ogawa, M., Maruyama, N., Ohtsuka, R., Utsumi, S. and Takaiwa, F. (1999) Accumulation of Soybean Glycinin and Its Assembly with Glutelins in Rice. Plant Physiology, 120, 1063-1074. http://dx.doi.org/10.1104/pp.120.4.1063
[64] Kumar, S., Dhingra, A. and Daniell, H. (2004) Plastid Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots and Leaves Confers Enhanced Salt Tolerance. Plant Physiology, 136, 2843-2854. http://dx.doi.org/10.1104/pp.104.045187
[65] Scwacka, M., Krzymowskab, M., Kowalczyk, M.E. and Osuch, A. (1999) Transgenic Cucumber Plants Expressing the Thaumatin Gene. In: Bielecki, S., Tramper, J. and Polak, J., Eds., Food Biotechnology. Proceedings of an International Symposium, Elsevier, Amsterdam, 43-48.
[66] Cornell University (1997)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=55-1%2F63-1
[67] Agritope Inc. (1999)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=16&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[68] Schwall, G., Safford, R., Westcott, R., Jeffcoat, A., Tayal, A., Shi, Y.C., et al. (2000) Production of Very-High-Amy-lose Potato Starch by Inhibition of SBE A and B. Nature Biotechnology, 18, 551-554. http://dx.doi.org/10.1038/75427
[69] USDA (2009)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=59&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[70] National Operating Company Tobacco and Matches (1999)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=C%2FF%2F93%2F08-02
[71] Vector Tobacco Inc. (2002)
http://ceragmc.org/index.php?action=gm_crop_database&mode=ShowProd&data=Vector+21-41
[72] Lilius, G., Holmberg, N. and Bulow, L. (1996) Enhanced NaCl Stress Tolerance in Transgenic Tobacco Expressing Bacterial Choline Dehydrogenase. Nature Biotechnology, 14, 177-180.
http://dx.doi.org/10.1038/nbt0296-177
[73] Tarczynski, M., Bohnert, H. and Jense, R.G. (1993) Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol. Science, 259, 508-510.
http://dx.doi.org/10.1126/science.259.5094.508
[74] Holmstrom, K.O., Mantyla, E., Welin, B., Mandal, A., Palva, E.T., Tunnela, O.E. and Londesborough, J. (1996) Drought Tolerance in Tobacco. Nature, 379, 683-684. http://dx.doi.org/10.1038/379683a0
[75] Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J. and Smeekens, S.C.M. (1995) Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress. Plant Physiology, 107, 125-130.
[76] Murata, N., Sato, N., Takahashi, N. and Hamazaki, Y. (1982) Composition and Positional Distribution of Fatty Acids in Phospholipids from Leaves of Chilling Sensitive and Chilling Resistant Plants. Plant and Cell Physiology, 23, 1071- 1079.
[77] Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994) Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast-Fatty Acid Desaturase in Transgenic Tobacco. Plant Physiology, 105, 601-605.
[78] Grichko, V.P. and Glick, B.R. (2001) Flooding Tolerance of Transgenic Tomato Plants Expressing the Bacterial Enzyme ACC Deaminase Controlled by the 35S rolD or PRB-1b Promoter. Plant and Cell Physiology, 42, 245-249.
[79] Deak, M., Horvarth, G.V., Davletova, S., Torok, K., Sass, L., Vass, I., et al. (1999) Plants Ectopically Expressing the Iron-Binding Protein Ferratin Are Tolerant to Oxidative Damage and Pathogen. Nature Biotechnology, 17, 192-196. http://dx.doi.org/10.1038/6198
[80] Dhankher, O.P., Shast, N.A., Rosen, B.P., Fuhrmann, M. and Meagher, R.B. (2003) Increased Cadmium Tolerance and Accumulation by Plants Expressing Bacterial Arsenate Reductase. New Phytologist, 159, 431-441. http://dx.doi.org/10.1046/j.1469-8137.2003.00827.x
[81] Bejo Zaden, B.V. (1997)
http://ceragmc.org/index.php?hstIDXCode%5B%5D=13&auDate1=&auDate2=&action=gm_crop_database&mode=Submit
[82] Carneiro, M.F. (1997) Coffee Biotechnology and Its Application in Genetic Transformation. Euphytica, 96, 167-172. http://dx.doi.org/10.1023/A:1002969429010
[83] Santana-Buzzy, N., Rojas-Herrara, R., Galaz-Avalos, R.M., Ku-Cauich, J.R., Mijangos-Cortes, J., Gutierrez-Pancheco, L.C., et al. (2007) Advances in Coffee Tissue Culture and Its Practical Applications. In Vitro Cellular & Developmental Biology-Plant, 43, 507-520.
http://dx.doi.org/10.1007/s11627-007-9074-1
[84] Vega, F.E., Ebert, A.W. and Ming, R. (2008) Coffee Germplasm Resources, Genomics, and Breeding. Plant Breeding Reviews, 30, 415-447.
[85] Duke, S.O. (2003) Weeding with Transgenes. Trends in Biotechnology, 21, 192-195.
http://dx.doi.org/10.1016/S0167-7799(03)00056-8
[86] Gonsalves, D. (1998) Control of Papaya Ringspot Virus in Papaya: A Case Study. Annual Review of Phytopathology, 36, 415-437. http://dx.doi.org/10.1146/annurev.phyto.36.1.415
[87] Zhai, W., Li, L.X., Tian, W., Zhou, Y., Pan, X., Cao, S., et al. (2000) Introduction of a Rice Blight Resistance Gene, Xa21, into Five Chinese Rice Varieties through an Agrobacterium-Mediated System. Science in China Series C, 43, 361-368. http://dx.doi.org/10.1007/BF02879300
[88] López-Bucio, J., de la Vega, O.M., Guevara-García, A. and Herrera-Estrella, L. (2000) Enhanced Phosphorous Uptake in Transgenic Tobacco Plants that Overproduce Citrate. Nature Biotechnology, 18, 450-453. http://dx.doi.org/10.1038/74531
[89] H?usler, R.E., Hirsch, H.J., Kreuzaler, F. and Peterh?nsel, C. (2002) Overexpression of C4-Cycle Enzymes in Transgenic C3 Plants: A Biotechnological Approach to Improve C3-Photosynthesis. Journal of Experimental Botany, 53, 591-607. http://dx.doi.org/10.1093/jexbot/53.369.591
[90] Leegood, R.C. (2002) C4 Photosynthesis: Principles of CO2 Concentration and Prospects for Its Introduction into C3 Plants. Journal of Experimental Botany, 53, 581-590. http://dx.doi.org/10.1093/jexbot/53.369.581
[91] Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., et al. (2008) Overproduction of C4 Photosynthetic Enzymes in Transgenic Rice Plants: An Approach to Introduce the C4-Like Photosynthetic Pathway into Rice. Journal of Experimental Botany, 59, 1799-1809.
http://dx.doi.org/10.1093/jxb/ern016
[92] Kathuria, H., Giri, J., Tyagi, H. and Tyagi, A.K. (2007) Advances in Transgenic Rice Biotechnology. Critical Reviews in Plant Sciences, 26, 65-103. http://dx.doi.org/10.1080/07352680701252809
[93] Bajaj, S. and Mohanty, A. (2005) Recent Advances in Rice Biotechnology—Towards Genetically Superior Transgenic Rice. Plant Biotechnology Journal, 3, 275-307.
http://dx.doi.org/10.1111/j.1467-7652.2005.00130.x
[94] Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P. and Potrykus, I. (2000) Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotinoid-Free) Rice Endosperm. Science, 287, 303-305. http://dx.doi.org/10.1126/science.287.5451.303
[95] Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. and Takaiwa, F. (1999) Iron Fortification of Rice Seed by the Soybean Ferritin Gene. Nature Biotechnology, 17, 282-286. http://dx.doi.org/10.1038/7029
[96] Shen, H., Poovaiah, C.R., Ziebell, A., Tschaplinski, T.J., Pattathil, S., Gjersing, E., et al. (2013) Enhanced Characteristics of Genetically Modified Switchgrass (Panicum virgatum L.) for High Biofuel Production. Biotechnology for Biofuels, 6, 71. http://dx.doi.org/10.1186/1754-6834-6-71
[97] Chen, F. and Dixon, R.A. (2007) Lignin Modification Improves Fermentable Sugar Yields for Biofuel Production. Nature Biotechnology, 25, 759-761. http://dx.doi.org/10.1038/nbt1316
[98] Thurston, C.F. (1994) The Structure and Function of Fungal Laccases. Microbiology, 140, 19-26. http://dx.doi.org/10.1099/13500872-140-1-19
[99] Hood, E.E., Bailey, M.R., Beifuss, K., Magallanes-Lundback, M., Horn, M.E., Callaway, E., et al. (2003) Criteria for High Level Expression of a Fungal Laccase Gene in Transgenic Maize. Plant Biotechnology Journal, 1, 129-140. http://dx.doi.org/10.1046/j.1467-7652.2003.00014.x
[100] Dean, J.F.D. (2005) Synthesis of Lignin in Transgenic and Mutant Plants. In: Steinbuchel, A., Doi, Y. and Weinheim, D.E., Eds., Biotechnology of Biopolymers. From Synthesis to Patents, Wiley-VCH Verlag, Weinheim, 4-26.
[101] Baucher, M., Monties, B., Van Montagu, M. and Boerjan, W. (1998) Biosynthesis and Genetic Engineering of Lignin. Critical Reviews in Plant Sciences, 17, 125-197.
http://dx.doi.org/10.1016/S0735-2689(98)00360-8
[102] Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., et al. (1999) Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping. Plant Physiology, 119, 153-164. http://dx.doi.org/10.1104/pp.119.1.153
[103] Madison, L.L. and Huisman, G.W. (1999) Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 63, 21-53.
[104] Arai, Y., Nakashita, H., Suzuki, Y., Kobayashi, Y., Shimizu, T., Yasuda, M., et al. (2002) Synthesis of a Novel Class of Polyhydroxyalkanoates in Arabidopsis Peroxisomes, and Their Use in Monitoring Short-Chain-Length Intermediates of β-Oxidation. Plant & Cell Physiology, 43, 555-562.
http://dx.doi.org/10.1093/pcp/pcf068
[105] Cahoon, E.B., Ripp, K.G., Hall, S.E. and Kinney, A.J. (2001) Formation of Conjugated Δ8,Δ10-Double Bonds by Δ12-Oleic Acid Desaturase-Related Enzymes. Biosynthetic Origin of Calendic Acid. The Journal of Biological Chemistry, 276, 2637-2643. http://dx.doi.org/10.1074/jbc.M009188200
[106] Broun, P. and Somerville, C. (1997) Accumulation of Ricinoleic, Lesquerolic, and Densipolic Acids in Seeds of Transgenic Arabidopsis Plants that Express a Fatty Acyl Hydroxylase cDNA from Castor Bean. Plant Physiology, 113, 933-942. http://dx.doi.org/10.1104/pp.113.3.933
[107] van de Loo, F.J., Broun, P., Turner, S. and Somerville, C. (1995) An Oleate 12-Hydroxylase from Ricinus communis L. Is a Fatty Acyl Desaturase Homolog. Proceedings of the National Academy of Sciences of the United States of America, 92, 6743-6747. http://dx.doi.org/10.1073/pnas.92.15.6743
[108] Singh, S.P., Zhou, X.R., Liu, Q., Stymne, S. and Green, A.G. (2005) Metabolic Engineering of New Fatty Acids in Plants. Current Opinion in Plant Biology, 8, 197-203.
http://dx.doi.org/10.1016/j.pbi.2005.01.012
[109] Napier, J.A. (2007) The Production of Unusual Fatty Acids in Transgenic Plants. Annual Review of Plant Biology, 58, 295-319. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103811
[110] McKeon, T.A. (2003) Genetically Modified Crops for Industrial Products and Processes and Their Affects on Human Health. Trends in Food Science and Technology, 14, 229-241.
http://dx.doi.org/10.1016/S0924-2244(03)00071-2
[111] Berken, A., Mulholland, M.M., LeDuc, D.L. and Terry, N. (2002) Genetic Engineering of Plants to Enhance Selenium Phytoremediation. Critical Reviews in Plant Sciences, 21, 567-582.
http://dx.doi.org/10.1080/0735-260291044368
[112] Eapen, S. and D’Souza, S.F. (2005) Prospects of Genetic Engineering of Plants for Phytoremediation of Toxic Metals. Biotechnology Advances, 23, 97-114. http://dx.doi.org/10.1016/j.biotechadv.2004.10.001
[113] Eapen, S., Singh, S. and D’Souza, S. (2007) Advances in Development of Transgenic Plants for Remediation of Xenobiotic Pollutants. Biotechnology Advances, 25, 442-451.
http://dx.doi.org/10.1016/j.biotechadv.2007.05.001
[114] Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K. and Mackova, M. (2008) Novel Roles for Genetically Modified Plants in Environmental Protection. Trends in Biotechnology, 26, 146-152. http://dx.doi.org/10.1016/j.tibtech.2007.11.009
[115] Doty, S.L. (2008) Enhancing Phytoremediation through the Use of Transgenics and Endophytes. New Phytologist, 179, 318-333. http://dx.doi.org/10.1111/j.1469-8137.2008.02446.x
[116] Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009) Phytoremediation of Contaminated Soils and Groundwater: Lessons from the Field. Environmental Science and Pollution Research, 16, 765-794. http://dx.doi.org/10.1007/s11356-009-0213-6
[117] Kotrba, P., Najmanova, J., Macek, T., Ruml, T. and Mackova, M. (2009) Genetically Modified Plants in Phytoremediation of Heavy Metal and Metalloid Soil and Sediment Pollution. Biotechnology Advances, 27, 799-810. http://dx.doi.org/10.1016/j.biotechadv.2009.06.003
[118] Van Aken, B., Correa, P.A. and Schnoor, J.L. (2010) Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environmental Science and Technology, 44, 2767-2776.
http://dx.doi.org/10.1021/es902514d
[119] Zhang, Y.W., Tam, N.F.Y. and Wong, Y.S. (2004) Cloning and Characterization of Type 2 Metallothionein-Like Gene from a Wetland Plant, Typha latifolia. Plant Science, 167, 869-877. http://dx.doi.org/10.1016/j.plantsci.2004.05.040
[120] Pilon-Smits, E.A.H., Hwang, S., Lytle, C.M., Zhu, Y., Tai, J.C., Bravo, R.C., et al. (1999) Overexpression of ATP Sulfurylase in Indian Mustard Leads to Increased Selenate Uptake, Reduction and Tolerance. Plant Physiology, 119, 123-132. http://dx.doi.org/10.1104/pp.119.1.123
[121] Van Huysen, T., Terry, N. and Pilon-Smits, E.A.H. (2004) Exploring the Selenium Phytoremediation Potential of Transgenic Indian Mustard Overexpressing ATP Sulfurylase or Cystathionine-γ-Synthase. International Journal of Phytoremediation, 6, 111-118. http://dx.doi.org/10.1080/16226510490454786
[122] Cobbett, C. and Goldsbrough, P. (2002) Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annual Review of Plant Biology, 53, 159-182.
http://dx.doi.org/10.1146/annurev.arplant.53.100301.135154
[123] Kawashima, C.G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K.T. and Saito, K. (2004) Heavy Metal Tolerance of Transgenic Tobacco Plants Over-Expressing Cysteine Synthase. Biotechnology Letters, 26, 153-157. http://dx.doi.org/10.1023/B:BILE.0000012895.60773.ff
[124] Tong, Y.P., Kneer, R. and Zhu, Y.G. (2004) Vacuolar Compartmentalization: A Second-Generation Approach to Engineering Plants for Phytoremediation. Trends in Plant Science, 9, 7-9.
http://dx.doi.org/10.1016/j.tplants.2003.11.009
[125] Cherian, S. and Oliveira, M.M. (2005) Transgenic Plants in Phytoremediation: Recent Advances in New Possibilities. Environmental Science and Technology, 39, 9377-9390.
http://dx.doi.org/10.1021/es051134l
[126] Misra, S. and Gedamu, L. (1989) Heavy Metal Tolerant Transgenic Brassica napus L. and Nicotiana tabacum L. Plants. Theoretical and Applied Genetics, 78, 161-168.
http://dx.doi.org/10.1007/BF00288793
[127] Pan, A., Yang, M., Tie, F., Li, L., Chen, Z. and Ru, B. (1994) Expression of Mouse Metallothionein-I Gene Confers Cadmium Resistance in Transgenic Tobacco Plants. Plant Molecular Biology, 24, 341-351. http://dx.doi.org/10.1007/BF00020172
[128] Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Shinmachi, F., Noguchi, A., et al. (1997) Genetic Improvement of Heavy Metal Tolerance in Plants by Transfer of the Yeast Metallothionein Gene (CUP1). Plant and Soil, 196, 277-281. http://dx.doi.org/10.1023/A:1004222612602
[129] Evans, K.M., Gatehouse, J.A., Lindsay, W.P., Shi, J., Tommey, A.M. and Robinson, N.J. (1992) Expression of the Pea Metallothionein-Like Gene PsMTA in Escherichia coli and Arabidopsis thaliana and Analysis of Trace Metal Ion Accumulation: Implications for PsMTA Function. Plant Molecular Biology, 20, 1019-1028. http://dx.doi.org/10.1007/BF00028889
[130] Zhu, Y., Pilon-Smits, E.A.H., Tarun, A., Weber, S.U., Jouanin, L. and Terry, N. (1999) Cadmium Tolerance and Accumulation in Indian Mustard Is Enhanced by Overexpressing γ-Glutamylcysteine Synthetase. Plant Physiology, 121, 1169-1177. http://dx.doi.org/10.1104/pp.121.4.1169
[131] Arisi, A.C.M., Noctor, G., Foyer, C.H. and Jouanin, L. (1997) Modification of Thiol Contents in Poplars (Populus tremula × P. alba) Overexpressing Enzymes Involved in Glutathione Synthesis. Planta, 203, 362-373. http://dx.doi.org/10.1007/s004250050202
[132] Bizily, S.P., Rugh, C.L., Summers, A.O. and Meagher, R.B. (1999) Phytoremediation of Methylmercury Pollution: merB Expression in Arabidopsis thaliana Confers Resistance to Organomercurials. Proceedings of the National Academy of Sciences of the United States of America, 96, 6808-6813.
http://dx.doi.org/10.1073/pnas.96.12.6808
[133] Rugh, C.L., Wilde, H.D., Stack, N.M., Thompson, D.M., Summers, A.O. and Meagher, R.B. (1996) Mercuric Ion Reduction and Resistance in Transgenic Arabidopsis thaliana Plants Expressing a Modified Bacterial merA Gene. Proceedings of the National Academy of Sciences of the United States of America, 93, 3182-3187. http://dx.doi.org/10.1073/pnas.93.8.3182
[134] LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., et al. (2004) Overexpression of Selenocysteine Methyltransferase in Arabidopsis and Indian Mustard Increases Selenium Tolerance and Accumulation. Plant Physiology, 135, 377-383.
http://dx.doi.org/10.1104/pp.103.026989
[135] French, C.E., Rosser, S.J., Davies, G.J., Nicklin, S. and Bruce, N.C. (1999) Biodegradation of Explosives by Transgenic Plants Expressing Pentaerythritol Tetranitrate Reductase. Nature Biotechnology, 17, 491-494. http://dx.doi.org/10.1038/8673
[136] Gullner, G., Komives, T. and Rennenberg, H. (2001) Enhanced Tolerance of Transgenic Poplar Plants Overexpressing γ-Glutamylcysteine Synthetase towards Chloroacetanilide Herbicides. Journal of Experimental Botany, 52, 971-979. http://dx.doi.org/10.1093/jexbot/52.358.971
[137] Flocco, C.G., Lindblom, S.D., Elizabetha, A.H. and Smits, P. (2004) Overexpression of Enzymes Involved in Glutathione Synthesis Enhances Tolerance to Organic Pollutants in Brassica juncea. International Journal of Phytoremediation, 6, 289-304. http://dx.doi.org/10.1080/16226510490888811
[138] Ohkawa, H., Imaishi, H., Shiota, N., Yamada, T. and Inui, H. (1999) Cytochrome P450s and Other Xenobiotic Metabolizing Enzymes in Plants. In: Brooks, J.T. and Roberts, T.R., Eds., Pesticide Chemistry and Biosciences: The Food-Environment Challenge, Royal Society of Chemistry, Cambridge, 259-264.
[139] Inui, H., Kodama, T., Ohkawa, Y. and Ohkawa, H. (2000) Herbicide Metabolism and Cross-Tolerance in Transgenic Potato Plants Co-Expressing Human CYP1A1, CYP2B6 and CYP2C19. Pesticide Biochemistry and Physiology, 66, 116-129. http://dx.doi.org/10.1006/pest.1999.2454
[140] Protalix Biotherapeutics (2014)
http://www.genengnews.com/gen-news-highlights/protalix-pfizer-report-fda-approval-of-plant-derived-b-gaucher-b/81246710/
[141] Union of Concerned Scientists (2006) Position Paper: Pharmaceutical and Industrial Crops. http://www.ucsusa.org
[142] Liénard, D., Sourrouille, C., Gomord, V. and Faye, L. (2007) Pharming and Transgenic Plants. Biotechnology Annual Review, 13, 115-147. http://dx.doi.org/10.1016/S1387-2656(07)13006-4
[143] Walsh, G. and Jefferis, R. (2006) Post-Translational Modifications in the Context of Therapeutic Proteins. Nature Biotechnology, 24, 1241-1252. http://dx.doi.org/10.1038/nbt1252
[144] Gomord, V. and Faye, L. (2004) Posttranslational Modification of Therapeutic Proteins in Plants. Current Opinion in Plant Biology, 7, 171-181. http://dx.doi.org/10.1016/j.pbi.2004.01.015
[145] Saklani, A. and Kutty, S.K. (2008) Plant-Derived Compounds in Clinical Trials. Drug Discovery Today, 13, 161-171. http://dx.doi.org/10.1016/j.drudis.2007.10.010
[146] Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., et al. (1995) Generation and Assembly of Secretory Antibodies in Plants. Science, 268, 716-719. http://dx.doi.org/10.1126/science.7732380
[147] Khoudi, H., Laberge, S., Ferullo, J.M., Bazin, R., Darveau, A., Castonguay, Y., et al. (1999) Production of a Diagnostic Monoclonal Antibody in Perennial Alfalfa Plants. Biotechnology and Bioengineering, 64, 135-143. http://dx.doi.org/10.1002/(SICI)1097-0290(19990720)64:2<135::AID-BIT2>3.3.CO;2-H
[148] Gomord, V., Chamberlin, P., Jefferis, R. and Faye, L. (2005) Biopharmaceutical Production in Plants: Problems, Solutions, and Opportunities. Trends in Biotechnology, 23, 559-565.
http://dx.doi.org/10.1016/j.tibtech.2005.09.003
[149] Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischhoff, D.A. (1991) Modification of the Coding Sequence Enhances Plant Expression of Insect Control Protein Genes. Proceedings of the National Academy of Sciences of the United States of America, 88, 3324-3328.
http://dx.doi.org/10.1073/pnas.88.8.3324
[150] Batard, Y., Hehn, A., Nedelkina, S., Schalk, M., Pallet, K., Schaller, H., et al. (2000) Increasing Expression of P450 and P450-Reductase Proteins from Monocots in Heterologous Systems. Archives of Biochemistry and Biophysics, 379, 161-169. http://dx.doi.org/10.1006/abbi.2000.1867
[151] Hamada, A., Yamaguchi, K.I., Ohnishi, N., Harada, M., Nikumaru, S. and Honda, H. (2005) High Level Production of Yeast (Schwanniomyces occidentalis) Phytase in Transgenic Rice Plants by a Combination of Signal Sequence and Codon Modification of the Phytase Gene. Plant Biotechnology Journal, 3, 43-55.
[152] Scholthof, H.B., Scholthof, K.B. and Jackson, A.O. (1995) Identification of Tomato Bushy Stunt Virus Host-Specific Symptom Determinants by Expression of Individual Genes from a Potato Virus X Vector. The Plant Cell, 7, 1157- 1172. http://dx.doi.org/10.1105/tpc.7.8.1157
[153] Voinnet, O., Rivas, S., Mestre, P. and Baulcombe, D. (2003) An Enhanced Transient Expression System in Plants Based on Suppression of Gene Silencing by p19 Protein of Tomato Bushy Stunt Virus. The Plant Journal, 33, 949-956. http://dx.doi.org/10.1046/j.1365-313X.2003.01676.x
[154] Komarnytsky, S., Borisjuk, N., Yakoby, N., Garvey, A. and Raskin, I. (2006) Cosecretion of Protease Inhibitor Stabilizes Antibodies Produced by Plant Roots. Plant Physiology, 141, 1185-1193. http://dx.doi.org/10.1104/pp.105.074419
[155] Drake, P.M., Chargelegue, D.M., Vine, N.D., van Dolleweerd, C.J., Obregon, P. and Ma, J.K. (2003) Rhizosecretion of a Monoclonal Antibody Protein Complex from Transgenic Tobacco Roots. Plant Molecular Biology, 52, 233-241. http://dx.doi.org/10.1023/A:1023909331482
[156] Arcalis, E., Marcel, S., Altmann, F., Kolarich, D., Drakakaki, G., Fischer, R., et al. (2004) Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm. Plant Physiology, 136, 3457-3466. http://dx.doi.org/10.1104/pp.104.050153
[157] Nykiforuk, C.L., Booth, J.G., Murray, E.W., Keon, R.G., Goren, H.J., Markley, N.A. and Moloney, M.M. (2006) Transgenic Expression and Recovery of Biologically Active Recombinant Human Insulin from Arabidopsis thaliana Seeds. Plant Biotechnology Journal, 4, 77-85.
http://dx.doi.org/10.1111/j.1467-7652.2005.00159.x
[158] Faye, L. and Daniell, H. (2006) Novel Pathway for Glycoprotein Import into Chloroplasts. Plant Biotechnology Journal, 19, 71-74.
[159] Bardor, M., Faveeuw, C., Gilbert, A.C., Gilbert, D., Galas, L., Trottein, F., et al. (2003) Immunoreactivity in Mammals of Two Typical Plant Glyco-Epitopes, Cor-α(1,3)-Fucose and Core Xylose. Glycobiology, 13, 427-434. http://dx.doi.org/10.1093/glycob/cwg024
[160] Gomord, V., Sourouille, C., Fitchette, A.C., Bador, M., Pagny, S., Lerouge, P. and Faye, L. (2004) Production and Glycosylation of Plant-Made Pharmaceuticals: The Antibody as a Challenge. Plant Biotechnology Journal, 2, 83-100. http://dx.doi.org/10.1111/j.1467-7652.2004.00062.x
[161] Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., et al. (2004) Recombinant Anti-hCG Antibodies Retained in the Endoplasmic Reticulum of Transformed Plants Lack Core Xylose and Core-α(1,3)-fucose Residues. Plant Biotechnology Journal, 2, 279-287.
http://dx.doi.org/10.1111/j.1467-7652.2004.00078.x
[162] Triguero, A., Cabrera, G., Cremata, J., Yuen, C.T., Wheeler, J. and Ramirez, N.I. (2005) Plant-Derived Mouse lgG Monoclonal Antibody Fused to KDEL Endoplasmic Reticulum-Retention Signal Is N-glycosylated Homogenously throughout the Plant and Mostly High-Mannose Type N-glycans. Plant Biotechnology Journal, 3, 449-457. http://dx.doi.org/10.1111/j.1467-7652.2005.00137.x
[163] Palacpac, N.Q., Yoshida, S., Sakai, H., Kimura, Y., Fujiyama, K., Yoshida, T. and Seki, T. (1999) Stable Expression of Human β1,4-galactosyltransfrase in Plant Cells Modifies N-Linked Glycosylation Patterns. Proceedings of the National Academy of Sciences of the United States of America, 96, 4692-4697. http://dx.doi.org/10.1073/pnas.96.8.4692
[164] Bakker, H., Bardor, M., Molhoff, J., Gomord, V., Elbers, I., Stevens, L., et al. (2001) Humanized Glycans on Antibodies Produced by Transgenic Plants. Proceedings of the National Academy of Sciences of the United States of America, 98, 2899-2904. http://dx.doi.org/10.1073/pnas.031419998
[165] Protalix Biotherapeutics (2014) http://www.protalix.com/products/elelyso-taliglucerase-alfa.asp
[166] Protalix Biotherapeutics (2014)
http://www.protalix.com/development-pipeline/prx-102-fabry-disease.asp
[167] Protalix Biotherapeutics (2014)
http://www.thestreet.com/story/11306621/1/protalixs-acetylcholinesterase-demonstrates-potential-role-in-the-treatment-of-parkinsons-disease.html
[168] SemiBioSys Genetics (2014) http://www.semibiosys.com
[169] Agragen http://www.plantpharma.org
[170] USDA-APHIS (2014) http://www.aphis.usda.gov/biotechnology/about.shtml
[171] FAO (Food and Agriculture Organization) (2009) http://www.fao.org
[172] King, C., Purcell, L. and Vories, E. (2001) Plant Growth and Nitrogenase Activity of Glyphosate-Tolerant Soybean in Response to Foliar Glyphosate Applications. Agronomy Journal, 93, 179-186. http://dx.doi.org/10.2134/agronj2001.931179x
[173] Hohn, B., Levy, A.A. and Puchta, H. (2001) Elimination of Selection Markers from Transgenic Plants. Current Opinion in Biotechnology, 12, 139-143. http://dx.doi.org/10.1016/S0958-1669(00)00188-9
[174] Zuo, J.R., Niu, Q.W., Moller, S.G. and Chua, N.H. (2001) Chemical-Regulated, Site-Specific DNA Excision in Transgenic Plants. Nature Biotechnology, 19, 157-161. http://dx.doi.org/10.1038/84428
[175] Goedeke, S., Hensel, G., Kapusi, E., Gahrtz, M. and Kumlehn, J. (2007) Transgenic Barley in Fundamental Research and Biotechnology. Transgenic Plant Journal, 1, 104-117.
[176] Keenan, R.J. and Stemmer, W.P.C. (2002) Nontransgenic Crops from Transgenic Plants. Nature Biotechnology, 20, 215-216. http://dx.doi.org/10.1038/nbt0302-215
[177] Daniell, H. (2002) Molecular Strategies for Gene Containment in Transgenic Crops. Nature Biotechnology, 20, 581-586. http://dx.doi.org/10.1038/nbt0602-581
[178] Kuvshinov, V., Koivu, K., Kanerva, A. and Pehu, E. (2001) Molecular Control of Transgene Escape from Genetically Modified Plants. Plant Science, 160, 517-522.
http://dx.doi.org/10.1016/S0168-9452(00)00414-3
[179] Avni, A. and Edelman, M. (1991) Direct Selection for Parental Inheritance of Chloroplasts in Sexual Progeny of Nicotiana. Molecular and General Genetics, 225, 273-277.
http://dx.doi.org/10.1007/BF00269859
[180] Corriveau, J.P. and Coleman, A.W. (1988) Rapid Screening Method to Detect Potential Biparental Inheritance of Plastid DNA and Results for over 200 Angiosperm Species. American Journal of Botany, 75, 1443-1458. http://dx.doi.org/10.2307/2444695
[181] Wang, T., Li, Y., Shi, Y., Reboud, X., Darmency, H. and Gressel, J. (2004) Low Frequency Transmission of a Plastid- Encoded Trait in Setaria italica. Theoretical and Applied Genetics, 108, 315-320. http://dx.doi.org/10.1007/s00122-003-1424-8
[182] Huang, C.Y., Ayliffe, M.A. and Timmis, J.N. (2003) Direct Measurement of the Transfer Rate of Chloroplast DNA into the Nucleus. Nature, 408, 796-815.
[183] Singh, D.P., Jermakkow, A.M. and Swain, S.M. (2007) Preliminary Development of a Genetic Strategy to Prevent Transgene Escape by Blocking Effective Pollen Flow from Transgenic Plants. Functional Plant Biology, 34, 1055-1060. http://dx.doi.org/10.1071/FP06323
[184] Monsanto (2005) Annual Report for Fiscal Year Ended August 31, Form 10-K. U.S. Securities and Exchange Commission, Washington DC.
http://www.monsanto.com/investors/documents/pubs/2005/mon_2005_10-k.pdf
[185] McDougall, P. (2011) The Cost and Time Involved in the Discovery, Development and Authorisation of a New Plant Biotechnology Derived Trait. Consultancy Study for Crop Life International by P McDougall, Midlothian, 1-24.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.