Share This Article:

Angiotensin-(1-7) Changes Apoptosis-Related Genes Expression in Human Breast Cancer Cell Line T47D

Abstract Full-Text HTML XML Download Download as PDF (Size:2753KB) PP. 1412-1422
DOI: 10.4236/jct.2014.514143    3,447 Downloads   3,982 Views  

ABSTRACT

Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system with vasodilator and anti-proliferative properties. In the present study, we aim to investigate whether Ang-(1-7) induces apoptosis in breast cancer cells and whether the altered expression of apoptosis-related genes is involved in this process. Human breast cell line T47D was treated with angiotensin-(1-7) and angiotensin II (Ang II). Cell proliferation and apoptosis were quantified using hemocytometer and flow cytometry, respectively. The expression of 84 apoptosis-related genes was evaluated through qPCR array. Ang-(1-7), as opposed to Ang II, decreased proliferation and increased apoptosis in T47D cells. Moreover, many pro-apoptotic genes were up-regulated, such as BAK1, BAX, BCL2L1, BID and BIK. In addition, some anti-apoptotic genes as AKT1 and XIAP were down-regulated by heptapeptide. Although a deeper study should be performed, our results support the hypothesis that Ang-(1-7) could change the expression of several genes related to apoptosis, interfering directly in the molecular pathways associated with the survival of breast cancer cells.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Santos, C. , Brito, G. , Noronha, S. , Noronha, S. , Shimuta, S. , Nakaie, C. and Silva, I. (2014) Angiotensin-(1-7) Changes Apoptosis-Related Genes Expression in Human Breast Cancer Cell Line T47D. Journal of Cancer Therapy, 5, 1412-1422. doi: 10.4236/jct.2014.514143.

References

[1] Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M.J. (2008) Cancer Statistics: 2008. CA: A Cancer Journal for Clinicians, 58, 71-96. http://dx.doi.org/10.3322/CA.2007.0010
[2] American Cancer Society (2014) Cancer Facts & Figures 2014. American Cancer Society, Atlanta.
[3] Daidone, M.G., Paradiso, A., Gion, M., Harbeck, S.F. and Schmitt, M. (2004) Biomolecular Features of Clinical Relevance in Breast Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 31, 3-14. http://dx.doi.org/10.1007/s00259-004-1522-0
[4] Lopez-Garcia, M.A., Geyer, F.C., Lacroix-Triki, M., Marchió, C. and Reis-Filho, J.S. (2010) Breast Cancer Precursors Revisited: Molecular Features and Progression Pathways. Histopathology, 57, 171-192. http://dx.doi.org/10.1111/j.1365-2559.2010.03568.x
[5] Weinberg, R.A. (2008) A biologia do cancer. Artmed, Porto Alegre, 728 p.
[6] Ager, E.I., Neo, J. and Christophi, C. (2008) The Renin-Angiotensin System and Malignancy. Carcinogenesis, 29, 1675-1684. http://dx.doi.org/10.1093/carcin/bgn171
[7] Deshayes, F. and Nahmias, C. (2005) Angiotensin Receptors: A New Role in Cancer? Trends in Endocrinology and Metabolism, 16, 293-299. http://dx.doi.org/10.1016/j.tem.2005.07.009
[8] Okamoto, K., Tajima, H., Ohta, T., Nakanuma, S., Hayashi, H., Nakagawara, H., et al. (2010) The Role of Renin-Angiotensin System Independent Angiotensin II Production in Progression and Fibrosis of Intrahepatic Cholangiocarcinoma. Journal of Cancer and Chemotherapy, 37, 2231-2233.
[9] Baker, K.M. and Aceto, J.F. (1990) Angiotensin II Stimulation of Protein Syntheses and Cell Growth in Chick Heart Cells. American Journal of Physiology—Heart and Circulatory Physiology, 259, H610-H618.
[10] Weber, H., Taylor, D.S. and Molloy, C.I. (1994) Angiotensin II Induces Delayed Mitogenesis and Cellular Proliferation in Rat Aortic Smooth Muscle. Journal of Clinical Investigation, 93, 788-798.
http://dx.doi.org/10.1172/JCI117033
[11] Andrade, S.P., Cardoso, C.C., Machado, R.D.P. and Beraldo, W.T. (1996) Angiotensin-II-Induced Angiogenesis Is Sponge Implant in Mice. International Journal of Microcirculation, 16, 302-307. http://dx.doi.org/10.1159/000179189
[12] Parenti, A., Brogelli, L., Donnini, S., Ziche, M. and Ledda, F. (2001) Ang II Potentiates Mitogenic Effect of Norepinephrine in Vascular Muscle Cells: Role of FGF-2. American Journal of Physiology: Heart and Circulatory Physiology, 280, H99-H107.
[13] Santos, R.A., Campagnole-Santos, M.J. and Andrade, S.P. (2000) Angiotensin-(1-7): An Update. Regulatory Peptides, 91, 45-62. http://dx.doi.org/10.1016/S0167-0115(00)00138-5
[14] Strawn, W.B., Ferrario, C.M. and Tallant, E.A. (1999) Angiotensin (1-7) Reduces Smooth Muscle Growth after Vascular Injury. Hypertension, 33, 207-211. http://dx.doi.org/10.1161/01.HYP.33.1.207
[15] Freeman, E.J., Chisolm, G.M., Ferrario, C.M. and Tallant, E.A. (1996) Angiotensin-(1-7) Inhibits Vascular Smooth Muscle Cell Growth. Hypertension, 28, 104-108. http://dx.doi.org/10.1161/01.HYP.28.1.104
[16] Tallant, E.A., Ferrario, C.M. and Gallagher, P.E. (2005) Angiotensin-(1-7) Inhibits Growth of Cardiac Myocytes through Activation of the Mas Receptor. American Journal of Physiology: Heart and Circulatory Physiology, 289, H1560-H1566. http://dx.doi.org/10.1152/ajpheart.00941.2004
[17] Machado, R.D., Santos, R.A. and Andrade, S.P. (2000) Opposing Actions of Angiotensins on Angiogenesis. Life Sciences, 66, 67-76. http://dx.doi.org/10.1016/S0024-3205(99)00562-7
[18] Alves Corrêa, S.A., Ribeiro de Noronha, S.M., Nogueira-de-Souza, N.C., Valleta de Carvalho, C., Massad Costa, A.M., et al. (2009) Association between the Angiotensin Converting Enzyme (Insertion/Deletion) and Angiotensin II Type 1 Receptor (A1166C) Polymorphisms and Breast Cancer among Brazilian Women. Journal of Renin-Angiotensin-Aldosterone System, 10, 51-58.
http://dx.doi.org/10.1177/1470320309102317
[19] Mendizábal-Ruiz, A.P., Morales, J.A., Castro Martinez, X., Rubio, S.A.G., Valdez, L., Vásquez-Camacho, J.G., et al. (2011) RAS Polymorphisms in Cancerous and Benign Breast Tissue. Journal of Renin-Angiotensin-Aldosterone System, 12, 85-92. http://dx.doi.org/10.1177/1470320310383735
[20] Namazi, S., Monabati, A., Ardeshir-Rouhani-Fard, S. and Azarpira, N. (2010) Association of Angiotensin I Converting Enzyme (Insertion/Deletion) and Angiotensin II Type 1 Receptor (A1166C) Polymorphisms with Breast Cancer Prognostic Factors in Iranian Population. Molecular Carcinogenesis, 49, 1022-1030. http://dx.doi.org/10.1002/mc.20685
[21] Correa-Noronha, S.A.A., Noronha, S.M.R., Alecrim, C., Mesquita, A.C., Brito, G.S.S., Junqueira, M.G., et al. (2012) Association of Angiotensin-Converting Enzyme I Gene I/D Polymorphism with Endometrial but Not with Ovarian Cancer. Gynecological Endocrinology, 28, 889-891.
http://dx.doi.org/10.3109/09513590.2012.683060
[22] Gallagher, P.E. and Tallant, E.A. (2004) Inhibition of Human Lung Cancer Cell Growth by Angiotensin-(1-7). Carcinogenesis, 25, 2045-2052. http://dx.doi.org/10.1093/carcin/bgh236
[23] Soto-Pantoja, D.R., Menon, J., Gallagher, P.E. and Tallant, E.A. (2009) Angiotensin-(1-7) Inhibits Tumor Angiogenesis in Human Lung Cancer Xenografts with a Reduction in Vascular Endothelial Growth Factor. Molecular Cancer Therapeutics, 8, 1676-1683. http://dx.doi.org/10.1158/1535-7163.MCT-09-0161
[24] Menon, J., Soto-Pantoja, D.R., Callahan, M.F., Cline, J.M., Ferrario, C.M., Tallant, E.A. and Gallagher, P.E. (2007) Angiotensin-(1-7) Inhibits Growth of Human Lung Adenocarcinoma Xenografts in Nude Mice through a Reduction in Cyclooxygenase-2. Cancer Research, 67, 2809-2815.
http://dx.doi.org/10.1158/0008-5472.CAN-06-3614
[25] Cook, K.L., Metheny-Barlow, L.J., Tallant, E.A. and Gallagher, P.E. (2010) Angiotensin-(1-7) Reduces Fibrosis in Orthotopic Breast Tumors. Cancer Research, 70, 8319-8328. http://dx.doi.org/10.1158/0008-5472.CAN-10-1136
[26] Rodgers, K.E., Oliver, J. and di Zerega, G.S. (2006) Phase I/II Dose Escalation Study of Angiotensin 1-7 [A(1-7)] Administered before and after Chemotherapy in Patients with Newly Diagnosed Breast Cancer. Cancer Chemotherapy and Pharmacology, 57, 559-568. http://dx.doi.org/10.1007/s00280-005-0078-4
[27] Nicholson, D.W. (2000) From Bench to Clinic with Apoptosis-Based Therapeutic Agents. Nature, 407, 810-816. http://dx.doi.org/10.1038/35037747
[28] Chappell, M.C., Pirro, N.T., Sykes, A. and Ferrario, C.M. (1998) Metabolism of Angiotensin-(1-7) by Angiotensin-Converting Enzyme. Hypertension, 31, 362-367. http://dx.doi.org/10.1161/01.HYP.31.1.362
[29] Krishnan, B., Smith, T.L., Dubey, P., Zapadka, M.E., Torti, F.M., Willingham, M.C., Tallant, E.A. and Gallagher, P.E. (2012) Angiotensin-(1-7) Attenuates Metastatic Prostate Cancer and Reduces Osteoclastogenesis. The Prostate, 73, 71-82.
[30] Muscella, A., Greco, S., Elia, M.G., Storelli, C. and Marsigliante, S. (2002) Angiotensin II Stimulation of Na+/K+ATPase Activity and Cell Growth by Calcium-Independent Pathway in MCF-7 Breast Cancer Cells. Journal of Endocrinology, 173, 315-323. http://dx.doi.org/10.1677/joe.0.1730315
[31] Zivadinovic, D., Gametchu, B. and Watson, C.S. (2005) Membrane Estrogen Receptor-Alpha Levels in MCF-7 Breast Cancer Cells Predict cAMP and Proliferation Responses. Breast Cancer Research, 7, R101-R112. http://dx.doi.org/10.1186/bcr958
[32] Greco, S., Muscella, A., Elia, M.G., Salvatore, P., Storelli, C., Mazzotta, A., et al. (2003) Angiotensin II Activates Extracellular Signal Regulated Kinases via Protein Kinase C and Epidermal Growth Factor Receptor in Breast Cancer Cells. Journal of Cellular Physiology, 196, 370-377.
http://dx.doi.org/10.1002/jcp.10313
[33] Green, D.R. (2000) Apoptotic Pathways: Paper Wraps Stone Blunts Scissors. Cell, 102, 1-4. http://dx.doi.org/10.1016/S0092-8674(00)00003-9
[34] Bras, M., Queenan, B. and Susin, S.A. (2005) Programmed Cell Death via Mitochondria: Different Modes of Dying. Biochemistry, 70, 231-239.
[35] Fushimi, K., Ray, P., Kar, A., Wang, L., Sutherland, L.C. and Wu, J.Y. (2008) Up-Regulation of the Proapoptotic Caspase 2 Splicing Isoform by a Candidate Tumor Suppressor, RBM5. Proceedings of the National Academy of Sciences of the United States of America, 105, 15708-15713.
http://dx.doi.org/10.1073/pnas.0805569105
[36] Yamamuro, A., Kishino, T., Ohshima, Y., Yoshioka, Y., Kimura, T., Kasai, A. and Maeda, S. (2011) Caspase-4 Directly Activates Caspase-9 in Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells. Journal of Pharmacological Sciences, 115, 239-243. http://dx.doi.org/10.1254/jphs.10217SC
[37] Jiang, H., Zhang, L., Liu, J., Chen, Z., Na, R., Ding, G., et al. (2012) Knockdown of Zinc Finger Protein X-Linked Inhibits Prostate Cancer Cell Proliferation and Induces Apoptosis by Activating Caspase-3 and Caspase-9. Cancer Gene Therapy, 19, 684-689. http://dx.doi.org/10.1038/cgt.2012.53
[38] Li, C., Harada, A. and Oh, Y. (2012) IGFBP-3 Sensitizes Antiestrogen-Resistant Breast Cancer Cells through Interaction with GRP78. Cancer Letters, 325, 200-206. http://dx.doi.org/10.1016/j.canlet.2012.07.004
[39] Manzl, C., Peintner, L., Krumschnabel, G., Bock, F., Labi, V., Drach, M., et al. (2012) PIDDosome-Independent Tumor Suppression by Caspase-2. Cell Death & Differentiation, 19, 1722-1732.
http://dx.doi.org/10.1038/cdd.2012.54
[40] Nohara, K., Yokoyama, Y. and Kano, K. (2007) The Important Role of Caspase-10 in Sodium Butyrate-Induced Apoptosis. Kobe Journal of Medical Sciences, 53, 265-273.
[41] Ren, K., Lu, J., Porollo, A. and Du, C. (2012) Tumor-Suppressing Function of Caspase-2 Requires Catalytic Site Cys-320 and Site Ser-139 in Mice. Journal of Biological Chemistry, 287, 14792-14802.
http://dx.doi.org/10.1074/jbc.M112.347625
[42] Azmi, A.S. and Mohammad, R.M. (2009) Non-Peptidic Small Molecule Inhibitors against Bcl-2 for Cancer Therapy. Journal of Cellular Physiology, 218, 13-21. http://dx.doi.org/10.1002/jcp.21567
[43] Sung, E.S., Park, K.J., Choi, H.J., Kim, C.H. and Kim, Y.S. (2012) The Proteasome Inhibitor MG132 Potentiates TRAIL Receptor Agonist-Induced Apoptosis by Stabilizing tBid and Bik in Human Head and Neck Squamous Cell Carcinoma Cells. Experimental Cell Research, 318, 1564-1576.
http://dx.doi.org/10.1016/j.yexcr.2012.04.003
[44] Zhang, W., Wang, X. and Chen, T. (2012) Resveratrol Induces Apoptosis via a Bak-Mediated Intrinsic Pathway in Human Lung Adenocarcinoma Cells. Cell Signal, 24, 1037-1046.
http://dx.doi.org/10.1016/j.cellsig.2011.12.025
[45] Lipponen, P., Pietilainen, T., Kosma, V.M., Aaltomaa, S., Eskelinen, M. and Syrj?unen, K. (1995) Apoptosis Suppressing Protein Bcl-2 Is Expressed in Well-Differentiated Breast Carcinomas with Favorable Prognosis. The Journal of Pathology, 177, 49-55. http://dx.doi.org/10.1002/path.1711770109?
[46] Saegusa, M., Kamata, Y., Isono, M. and Okayasu, I. (1996) Bcl-2 Expression Is Correlated with a Low Apoptotic Index and Associated with Progesterone Receptor Immunoreactivity in Endometrial Carcinomas. The Journal of Pathology, 180, 275-282. http://dx.doi.org/10.1002/(SICI)1096-9896(199611) 180:3<275::AID-PATH660>3.0.CO;2-A
[47] Mustonen, M., Raunio, H., Paakko, P. and Soini, Y. (1997) The Extent of Apoptosis Is Inversely Associated with Bcl-2 Expression in Premalignant and Malignant Breast Lesions. Histopathology, 31, 347-354. http://dx.doi.org/10.1046/j.1365-2559.1997.2710877.x
[48] Holinger, E.P., Chittenden, T. and Lutz, R.J. (1999) Bak BH3 Peptides Antagonize Bcl-xL Function and Induce Apoptosis through Cytochrome c-Independent Activation of Caspases. Journal of Biological Chemistry, 274, 13298-13304. http://dx.doi.org/10.1074/jbc.274.19.13298
[49] Pataer, A., Fang, B., Yu, R., Kagawa, S., Hunt, K.K., McDonnell, T.J., et al. (2000) Adenoviral Bak Overexpression Mediates Caspase-Dependent Tumor Killing. Cancer Research, 60, 788-792.
[50] Hur, J., Chesnes, J., Coser, K.R., Lee, R.S., Geck, P., Isselbacher, K.J., et al. (2004) The Bik BH3-Only Protein Is Induced in Estrogen-Starved and Antiestrogen-Exposed Breast Cancer Cells and Provokes Apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 10, 2351-2356. http://dx.doi.org/10.1073/pnas.0307337101
[51] Daniel, P.T., Pun, K.T., Ritschel, S., Sturm, I., Holler, J., D?rken, B., et al. (1999) Expression of the Death Gene Bik/Nbk Promotes Sensitivity to Drug-Induced Apoptosis in Corticosteroid-Resistant T-Cell Lymphoma and Prevents Tumor Growth in Severe Combined Immunodeficient Mice. Blood, 94, 1100-1107.
[52] Matsumoto, K., Terakawa, M., Miura, K., Fukuda, S., Nakajima, T. and Saito, H. (2004) Extremely Rapid and Intense Induction of Apoptosis in Human Eosinophils by Anti-CD30 Antibody Treatment in Vitro. The Journal of Immunology, 172, 2186-2193. http://dx.doi.org/10.4049/jimmunol.172.4.2186
[53] Liu, Y., Wang, L., Lin, X.Y., Wang, J., Yu, J.H., Miao, Y. and Wang, E.H. (2012) Anti-Apoptotic Effect of Claudin-1 on TNF-α-Induced Apoptosis in Human Breast Cancer MCF-7 Cells. Tumor Biology, 33, 2307-2315.
[54] Elmetwali, T., Young, L.S. and Palmer, D.H. (2010) CD40 Ligand-Induced Carcinoma Cell Death: A Balance between Activation of TNFR-Associated Factor (TRAF) 3-Dependent Death Signals and Suppression of TRAF6-Dependent Survival Signals. Journal of Immunology, 184, 1111-1120.
http://dx.doi.org/10.4049/jimmunol.0900528
[55] He, S., Zhao, H., Fei, M., Wu, Y., Wang, L., Zhu, X. and Li, D. (2012) Expression of the Co-Signaling Molecules CD40-CD40L and Their Growth Inhibitory Effect on Pancreatic Cancer in Vitro. Oncology Reports, 28, 262-268.
[56] Jundi, M., Nadiri, A., Al-Zoobi, L., Hassan, G.S. and Mourad, W. (2012) CD40-Mediated Cell Death Requires TRAF6 Recruitment. Immunobiology, 217, 375-383. http://dx.doi.org/10.1016/j.imbio.2011.07.007
[57] Aulwurm, S., Wischhusen, J., Friese, M., Borst, J. and Weller, M. (2006) Immune Stimulatory Effects of CD70 Override CD70-Mediated Immune Cell Apoptosis in Rodent Glioma Models and Confer Long-Lasting Antiglioma Immunity in Vivo. International Journal of Cancer, 118, 1728-1735.
http://dx.doi.org/10.1002/ijc.21544
[58] von Rossum, A., Krall, R., Escalante, N.K. and Choy, J.C. (2011) Inflammatory Cytokines Determine the Susceptibility of Human CD8 T Cells to Fas-Mediated Activation-Induced Cell Death through Modulation of FasL and c-FLIPs Expression. Journal of Biological Chemistry, 286, 21137-21144.
http://dx.doi.org/10.1074/jbc.M110.197657
[59] Li, F., Gu, Y., Dong, W., Li, H., Zhang, L., Li, N., et al. (2010) Cell Death-Inducing DFF45-like Effector, a Lipid Droplet-Associated Protein, Might Be Involved in the Differentiation of Human Adipocytes. FEBS Journal, 277, 4173-4183. http://dx.doi.org/10.1111/j.1742-4658.2010.07806.x
[60] Yoo, H.J., Byun, H.J., Kim, B.R., Lee, K.H., Park, S.Y. and Rho, S.B. (2012) DAPk1 Inhibits NF-κB Activation through TNF-α and INF-γ-Induced Apoptosis. Cell Signal, 24, 1471-1477.
http://dx.doi.org/10.1016/j.cellsig.2012.03.010
[61] Georgopoulos, N.T., Steele, L.P., Thomson, M.J., Selby, P.J., Southgate, J. and Trejdosiewicz, L.K. (2006) A Novel Mechanism of CD40-Induced Apoptosis of Carcinoma Cells Involving TRAF3 and JNK/AP-1 Activation. Cell Death and Differentiation, 13, 1789-1801. http://dx.doi.org/10.1038/sj.cdd.4401859
[62] He, B.L., Yuan, J.M., Yang, L.Y., Xie, J.F., Weng, S.P., Yu, X.Q. and He, J.G. (2012) The Viral TRAF Protein (ORF111L) from Infectious Spleen and Kidney Necrosis Virus Interacts with TRADD and Induces Caspase 8-Mediated Apoptosis. PLoS ONE, 7, e37001. http://dx.doi.org/10.1371/journal.pone.0037001
[63] Somasagara, R.R., Hegde, M., Chiruvella, K.K., Musini, A., Choudhary, B., et al. (2012) Extracts of Strawberry Fruits Induce Intrinsic Pathway of Apoptosis in Breast Cancer Cells and Inhibits Tumor Progression in Mice. PLoS ONE, 7, e47021. http://dx.doi.org/10.1371/journal.pone.0047021
[64] Vázquez-Franco, J.E., Reyes-Maldonado, E., Vela-Ojeda, J., Domínguez-López, M.L. and Lezama, R.A. (2012) Src, Akt, NF-κB, BCL-2 and c-IAP1 May Be Involved in an Anti-Apoptotic Effect in Patients with BCR-ABL Positive and BCR-ABL Negative Acute Lymphoblastic Leukemia. Leukemia Research, 36, 862-867. http://dx.doi.org/10.1016/j.leukres.2012.03.020
[65] Annunziata, C.M., Kleinberg, L., Davidson, B., Berner, A., Gius, D., Tchabo, N., et al. (2007) BAG-4/SODD and Associated Antiapoptotic Proteins Are Linked to Aggressiveness of Epithelial Ovarian Cancer. Clinical Cancer Research, 13, 6585-6592. http://dx.doi.org/10.1158/1078-0432.CCR-07-0327
[66] McPherson, J.P., Sarras, H., Lemmers, B., Tamblyn, L., Migon, E., Matysiak-Zablocki, E., et al. (2009) Essential Role for Bclaf1 in Lung Development and Immune System Function. Cell Death and Differentiation, 16, 331-339. http://dx.doi.org/10.1038/cdd.2008.167
[67] Fan, G., Simmons, M.J., Ge, S., Dutta-Simmons, J., Kucharczak, J., et al. (2010) Defective Ubiquitin-Mediated Degradation of Antiapoptotic Bfl-1 Predisposes to Lymphoma. Blood, 115, 3559-3569. http://dx.doi.org/10.1182/blood-2009-08-236760
[68] Roth, W., Kermer, P., Krajewska, M., Welsh, K., Davis, S., Krajewski, S. and Reed, J.C. (2003) Bifunctional Apoptosis Inhibitor (BAR) Protects Neurons from Diverse Cell Death Pathways. Cell Death and Differentiation, 10, 1178-1187. http://dx.doi.org/10.1038/sj.cdd.4401287
[69] Yuan, K., Jing, G., Chen, J., Liu, H., Zhang, K., Li, Y., et al. (2011) Calmodulin Mediates Fas-Induced FADD-Independent Survival Signaling in Pancreatic Cancer Cells via Activation of Src-Extracellular Signal-Regulated Kinase (ERK). The Journal of Biological Chemistry, 286, 24776-24784.
http://dx.doi.org/10.1074/jbc.M110.202804
[70] Wensveen, F.M., Unger, P.P., Kragten, N.A., Derks, I.A., ten Brinke, A., Arens, R., et al. (2012) CD70-Driven Costimulation Induces Survival or Fas-Mediated Apoptosis of T Cells Depending on Antigenic Load. Journal of Immunology, 188, 4256-4267. http://dx.doi.org/10.4049/jimmunol.1102889
[71] Holcik, M., Gibson, H. and Korneluk, R.G. (2001) XIAP: Apoptotic Brake and Promising Therapeutic Target. Apoptosis, 6, 253-261. http://dx.doi.org/10.1023/A:1011379307472
[72] Kunze, D., Wuttig, D., Fuessel, S., Kraemer, K., Kotzsch, M., Meye, A., et al. (2008) Multitarget siRNA Inhibition of Antiapoptotic Genes (XIAP, BCL2, BCL-XL) in Bladder Cancer Cells. Anticancer Research, 28, 2259-2264.
[73] Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., et al. (1997) Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery. Cell, 9, 231-241.
http://dx.doi.org/10.1016/S0092-8674(00)80405-5
[74] Gagnon, V., Van Themsche, C., Turner, S., Leblanc, V. and Asselin, E. (2008) Akt and XIAP Regulate the Sensitivity of Human Uterine Cancer Cells to Cisplatin, Doxorubicin and Taxol. Apoptosis, 13, 259-271. http://dx.doi.org/10.1007/s10495-007-0165-6
[75] Van Themsche, C., Lafontaine, L. and Asselin, E. (2008) X-Linked Inhibitor of Apoptosis Protein Levels and Protein Kinase C Activity Regulate the Sensitivity of Human Endometrial Carcinoma Cells to Tumor Necrosis Factor Alpha-Induced Apoptosis. Endocrinology, 149, 3789-3798.
http://dx.doi.org/10.1210/en.2008-0275
[76] Zhang, Y., Wang, Y., Gao, W., Zhang, R., Han, X., Jia, M. and Guan, W. (2006) Transfer of siRNA against XIAP Induces Apoptosis and Reduces Tumor Cells Growth Potential in Human Breast Cancer in Vitro and in Vivo. Breast Cancer Research and Treatment, 96, 267-277. http://dx.doi.org/10.1007/s10549-005-9080-0

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.