Share This Article:

Mineral Chemistry and Thermobarometry of the Upper Eocene Volcanic Rocks in NE Tafresh, Iran

Abstract Full-Text HTML XML Download Download as PDF (Size:7059KB) PP. 612-621
DOI: 10.4236/ojg.2014.412045    3,429 Downloads   4,038 Views   Citations

ABSTRACT

Petrography and chemistry of minerals show that rocks of Upper Eocene in northeast of Tafresh are composed mostly of andesitic basalt, basaltic andesite and andesite volcanic rocks. Mineralogically these rocks are composed of phenocrystals of olivine, clinopyroxene and plagioclase and main texture of them is porphyry with cryptocrystalline or microcrystalline matrix. In addition, aphyric and pitted textures (amygdala) are also observed. According to the results of EPMA, phenocrystals of plagioclase in mentioned rocks include a range of anorthite to albite minerals. Alkali feldspars also contain a range of sodic to potassic minerals. Pyroxene crystals include hedenbergite, augite and hypersthene. Olivine minerals are often of the ferrohornblendite type. Based on thermobarometry it is estimated that to form clinopyroxene crystals of basaltic andesite rocks, temperature between 750°C to 1000°C is needed. Andesitic basalt rocks at higher temperature (1100°C) and andesite rocks at lower temperature (below 750°C) are formed. According to the distribution of aluminum in clinopyroxenes, these minerals at pressures less than 5 kbar and water content between 5% to 10% are crystallized. The mineral composition indicates that these rocks are formed in a tensional environment.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Baranpurian, N. , Emami, M. , Abedini, M. and Dabiri, R. (2014) Mineral Chemistry and Thermobarometry of the Upper Eocene Volcanic Rocks in NE Tafresh, Iran. Open Journal of Geology, 4, 612-621. doi: 10.4236/ojg.2014.412045.

References

[1] Stocklin, J. (1968) Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 52, 1229-1258.
[2] Shahabpour, J. (1982) Aspects of Alteration and Mineralization at the Sar-Cheshmeh Copper-Molybdenum Deposit, Kerman, Iran. Unpublished Ph.D. Thesis, University of Leeds, Leeds, 342 p.
[3] Alavi, M. (1980) Tectonostratigraphic Evolution of the Zagrosides of Iran. Geology, 8, 144-149. http://dx.doi.org/10.1130/0091-7613(1980)8<144:TEOTZO>2.0.CO;2
[4] Dabiri, R., Emami, M.H., Mollaei, H., Chen, B., Abedini, M.V., Omran, N.R. and Ghaffari, M. (2011) Quaternary Post-Collision Alkaline Volcanism NW of Ahar (NW Iran): Geochemical Constraints of Fractional Crystallization Process. Geologica Carpathica, 62, 547-562.
http://dx.doi.org/10.2478/v10096-011-0039-2
[5] Ghaffari, M., Rashidnejad-Omran, N., Dabiri, R., Chen, B. and Santos, J.F. (2013) Mafic-Intermediate Plutonic Rocks of the Salmas Area, Northwestern Iran: Their Source and Petrogenesis Significance. International Geology Review, 55, 2016-2029. http://dx.doi.org/10.1080/00206814.2013.817067
[6] Ghaffari, M. and Rashidnejad-Omran, N. (2014) Magma Mixing/Mingling in Salmas Granodiorite, NW Iran: Evidence from Mafic Microgranular Enclaves. Arabian Journal of Geosciences, (in press).
http://dx.doi.org/10.1007/s12517-014-1674-6
[7] Berberian, M. and King, G.C.P. (1981) Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265. http://dx.doi.org/10.1139/e81-019
[8] Morley, C.K., Kongwung, B., Julapour, A.A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. and Kazemi, H. (2009) Structural Development of a Major Late Cenozoic Basin and Transpressional Belt in Central Iran: The Central Basin in the Qom-Saveh Area. Geosphere, 5, 325-362. http://dx.doi.org/10.1130/GES00223.1
[9] Hajian, H. (1977) Geological Map of the Tafresh Area: Tehran. Geological Survey of Iran, Scale 1:100,000.
[10] Sepahi, A.A. and Malvandi, F. (2008) Petrology of the Bouein Zahra-Naein Plutonic Complexes, Urumieh-Dokhtar Belt, Iran: With Special Reference to Granitoids of the Saveh Plutonic Complex. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 185, 99-115. http://dx.doi.org/10.1127/0077-7757/2008/0104
[11] Hajian, J. (2001) Geology of Tafresh. Geological and Mineralogical Exploration Survey of Iran, Tehran.
[12] Keshavarzi, R., Esmaili, D., Kahkhaei, M.R., Mokhtari, M.A.A. and Jabari, R. (2014) Petrology, Geochemistry and Tectonomagmatic Setting of Neshveh Intrusion (NW Saveh). Open Journal of Geology, 4, 177-189.
[13] Deer, W.A., Howie, R.A. and Zussman, J. (1997) Single-Chain Silicates. Geological Society of London, London.
[14] Morimoto, N. (1988) Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76.
http://dx.doi.org/10.1007/BF01226262
[15] Berman, R. (1988) Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445-522.
http://dx.doi.org/10.1093/petrology/29.2.445
[16] Mercier, J.C.C. (1980) Single-Pyroxene Thermobarometry. Tectonophysics, 70, 1-37.
http://dx.doi.org/10.1016/0040-1951(80)90019-0
[17] Gasparik, T. (1984) Two-Pyroxene Thermobarometry with New Experimental Data in the System CaO-MgO-Al2O3-SiO2. Contributions to Mineralogy and Petrology, 87, 87-97.
http://dx.doi.org/10.1007/BF00371405
[18] Lindsley, D.H. (1983) Pyroxene Thermometry. American Mineralogist, 68, 477-493.
[19] Aoki, K.-I. and Shiba, I. (1973) Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan. Lithos, 6, 41-51. http://dx.doi.org/10.1016/0024-4937(73)90078-9
[20] Helz, R.T. (1976) Phase Relations of Basalts in Their Melting Ranges at = 5 kbar. Part II. Melt Compositions. Journal of Petrology, 17, 139-193. http://dx.doi.org/10.1093/petrology/17.2.139
[21] France, L., Koepke, J., Ildefonse, B., Cichy, S.B. and Deschamps, F. (2010) Hydrous Partial Melting in the Sheeted Dike Complex at Fast Spreading Ridges: Experimental and Natural Observations. Contributions to Mineralogy and Petrology, 160, 683-704. http://dx.doi.org/10.1007/s00410-010-0502-6
[22] Kilinc, A., Carmichael, I., Rivers, M. and Sack, R. (1983) The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air. Contributions to Mineralogy and Petrology, 83, 136-140.
http://dx.doi.org/10.1007/BF00373086
[23] Moretti, R. (2005) Polymerisation, Basicity, Oxidation State and Their Role in Ionic Modelling of Silicate Melts. Annals of Geophysics, 48, 583-608.
[24] Botcharnikov, R., Koepke, J., Holtz, F., McCammon, C. and Wilke, M. (2005) The Effect of Water Activity on the Oxidation and Structural State of Fe in a Ferro-Basaltic Melt. Geochimica et Cosmochimica Acta, 69, 5071-5085. http://dx.doi.org/10.1016/j.gca.2005.04.023
[25] Papike, J.J. and Cameron, M. (1976) Crystal Chemistry of Silicate Minerals of Geophysical Interest. Reviews of Geophysics, 14, 37-80. http://dx.doi.org/10.1029/RG014i001p00037
[26] Schweitzer, E., Papike, J. and Bence, A. (1979) Statistical Analysis of Clinopyroxenes from Deep-Sea Basalts. American Mineralogist, 64, 501-513.
[27] Kushiro, I. (1960) Si-Al Relation in Clinopyroxenes from Igneous Rocks. American Journal of Science, 258, 548-554. http://dx.doi.org/10.2475/ajs.258.8.548
[28] Nisbet, E.G. and Pearce, J.A. (1977) Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63, 149-160.
http://dx.doi.org/10.1007/BF00398776

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.