Share This Article:

The Magnetoresistance of Nanostructured Co-ZnO Films with ZnO Buffer-Layers

Abstract Full-Text HTML XML Download Download as PDF (Size:3652KB) PP. 996-1003
DOI: 10.4236/msa.2014.514101    3,413 Downloads   3,787 Views   Citations

ABSTRACT

Co-ZnO films were prepared on oxidised silicon by magnetron sputtering at room temperature both with and without a ZnO buffer-layer. The Co-ZnO films consisted of Co particles dispersed in a semiconductor matrix. The combination of a Co-ZnO layer and a ZnO buffer-layer has a higher magnetoresistance than the Co-ZnO layer alone on an insulating Si substrate. The causes of this effect were investigated using X-ray photoelectron spectroscopy, depth profiling using Auger electron spectroscopy and electrical resistance as well as measurements of the change in the saturation magnetisation, the field cooled- and zero field cooled-magnetisation. This work has shown clearly what criteria are needed to optimise the magnetoresistance and how these conditions may be met by adding a buffer-layer thus making granular films based on ZnO more suitable for applications as field sensors.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Li, X. , Cheng, L. , Cheng, L. , Wang, Y. , Gao, Y. , Quan, Z. , Qin, X. , Blythe, H. , Gehring, G. and Xu, X. (2014) The Magnetoresistance of Nanostructured Co-ZnO Films with ZnO Buffer-Layers. Materials Sciences and Applications, 5, 996-1003. doi: 10.4236/msa.2014.514101.

References

[1] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A. and Chazelas, J. (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61, 2472.
http://dx.doi.org/10.1103/PhysRevLett.61.2472
[2] Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W. (1989) Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange. Physical Review Letters B, 39, 4828.
http://dx.doi.org/10.1103/PhysRevB.39.4828
[3] Prinz, G.A. (1998) Magnetoelectronics. Science, 282, 1660.
http://dx.doi.org/10.1126/science.282.5394.1660
[4] Greig, D., Hall, M.J., Hammond, C., Hickey, B.J., Ho, H.P., Howson, M.A., Walker, M.J., Wiser, N. and Wright, D.G. (1992) The Giant Magnetoresistance Co/Cu Superlattices Grown by MBE. Journal of Magnetism and Magnetic Materials, 110, L239.
http://dx.doi.org/10.1016/0304-8853(92)90206-4
[5] Plaskett, T.S. and McGuire, T.R. (1993) Magnetoresistance in (Co10 ?/Cu 10 ?)n Multilayer Films as n Increases. Journal of Applied Physics, 73, 6378.
http://dx.doi.org/10.1063/1.352656
[6] Morrow, P., Tang, X.T., Parker, T.C., Shima, M. and Wang, G.C. (2008) Magnetoresistance of Oblique Angle Deposited Multilayered Co/Cu Nanocolumns Measured by a Scanning Tunnelling Microscope. Nanotechnology, 19, 065712.
http://dx.doi.org/10.1088/0957-4484/19/6/065712
[7] Wang, S.G., Ward, R.C.C., Du, G.X., Han, X.F., Wang, C. and Kohn, A. (2008) Temperature Dependence of Giant Tunnel Magnetoresistance in Epitaxial Fe/MgO/Fe MTJs. Physical Review Letters B, 78, 180411(R).
http://dx.doi.org/10.1103/PhysRevB.78.180411
[8] Chien, C.L., Xiao, John, Q. and Samuel Jiang, J. (1993) Giant Negative Magnetoresistance in Granular Ferromagnetic Systems. Journal of Applied Physics, 73, 5309.
http://dx.doi.org/10.1063/1.353765
[9] Peng, D.L., Wang, J.B., Wang, L.S., Liu, X.L., Wang, Z.W. and Chen, Y.Z. (2013) Electron Transport Properties of Magnetic Granular Films. Science China-Physics Mechanics & Astronomy, 56, 15.
http://dx.doi.org/10.1007/s11433-012-4969-1
[10] Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T. and van Wees, B.J. (2000) Fundamental Obstacle for Electrical Spin Injection from a Ferromagnetic Metal into a Diffusive Semiconductor. Physical Review Letters B, 62, R4790.
http://dx.doi.org/10.1103/PhysRevB.62.R4790
[11] Song, C., Liu, X.J., Zeng, F. and Pan, F. (2007) Fully Epitaxial Junction and Its Tunnel Magnetoresistance. Applied Physics Letters, 91, Article ID: 042106.
http://dx.doi.org/10.1063/1.2762297
[12] Pan, F., Song, C., Liu, X.J., Yang, Y.C. and Zeng, F. (2008) Ferromagnetism and Possible Application in Spintronics of Transition-Metal-Doped ZnO Films. Materials Science and Engineering: R: Reports, 62, 1-35.
http://dx.doi.org/10.1016/j.mser.2008.04.002
[13] Li, Q., Shen, T.T., Dai, Z.K., Cao, Y.L., Yan, S.S., Kang, S.S., Dai, Y.Y., Chen, Y.X., Liu, G.L. and Mei, L.M. (2012) Spin Polarization of Zn1-xCoxO Probed by Magnetoresistance. Applied Physics Letters, 101, Article ID: 172405.
http://dx.doi.org/10.1063/1.4764542
[14] Yan, S.S., Ren, C., Wang, X., Xin, Y., Zhou, Z.X., Mei, L.M., Ren, M.J., Chen, Y.X., Liu, Y.H. and Garmestani, H. (2004) Ferromagnetism and Magnetoresistance of Co-ZnO Inhomogeneous Magnetic Semiconductor. Applied Physics Letters, 84, 2376.
http://dx.doi.org/10.1063/1.1690881
[15] Li, X.L., Quan, Z.Y., Xu, X.H., Wu, H.S. and Gehring, G.A. (2008) Magnetoresistance in Co/ZnO Films. IEEE Transactions on Magnetics, 44, 2684-2687.
http://dx.doi.org/10.1109/TMAG.2008.2003238
[16] Quan, Z.Y., Xu, X.H., Li, X.L., Feng, Q. and Gehring, G.A. (2010) Investigation of Structure and Magnetoresistance in Co/ZnO Films. Journal of Applied Physics, 108, Article ID: 103912.
http://dx.doi.org/10.1063/1.3511752
[17] Quan, Z.Y., Zhang, X.P., Liu, W., Li, X.L., Addison, K., Gehring, G.A. and Xu, X.H. (2013) Enhanced Room Tempreture Magnetoresistance and Spin Injection from Metallic Cobalt in Co/ZnO and Co/ZnAlO Films. ACS Applied Materials & Interfaces, 5, 3607-3613.
http://dx.doi.org/10.1021/am303276b
[18] Park, S.Y., Kim, P.J., Lee, Y.P., Shin, S.W., Kim, T.H., Kang, J.H. and Rhee, J.Y. (2007) Realization of Room-Temperature Ferromagnetism and of Improved Carrier Mobility in Mn-Doped ZnO Film by Oxygen Deficiency, Introduced by Hydrogen and Heat Treatments. Advanced Materials, 19, 3496-3500.
http://dx.doi.org/10.1002/adma.200602144
[19] Qi, S.F., Jiang, F.X., Fan, J.P., Wu, H.S., Zhang, S.B., Gehring, G.A., Zhang, Z.Y. and Xu, X.H. (2011) Carrier-Mediated Nonlocal Ferromagnetic Coupling between Local Magnetic Polarons in Fe-Doped In2O3 and Co-Doped ZnO. Physical Review B, 84, Article ID: 205204.
http://dx.doi.org/10.1103/PhysRevB.84.205204
[20] Quan, Z.Y., Liu, W., Li, X.L., Xu, X.H., Addison, K., Score, D.S., Gehring, G.A. (2011) Structural and Magnetotransport Properties in Co/Nonmagnetic Films. Materials Letters, 65, 2982-2984.
http://dx.doi.org/10.1016/j.matlet.2011.06.027
[21] Chen, Y.X., Yan, S.S., Liu, G.L., Mei, L.M. and Ren, M.J. (2007) Variations from Zn1?xCoxO Magnetic Semiconductor to Co-ZnCoO Granular Composite. Chinese Physics Letters, 24, 214.
http://dx.doi.org/10.1088/0256-307X/24/1/058
[22] Jedrecy, N., von Bardeleben, H.J. and Demaille, D. (2009) High-Temperature Ferromagnetism by Means of Oriented Nanocolumns: Co Clustering in (Zn,Co)O. Physical Review B, 80, Article ID: 205204.
http://dx.doi.org/10.1103/PhysRevB.80.205204
[23] Potzger, K. and Zhou, S. (2009) Non-DMS Related Ferromagnetism in Transition Metal Doped Zinc Oxide. Physica Status Solidi B, 246, 1147-1167.
http://dx.doi.org/10.1002/pssb.200844272
[24] Mitani, S., Takahashi, S., Takanashi, K., Yakushiji, K., Maekawa, S. and Fujimori, H. (1998) Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-Order Tunneling. Physical Review Letters, 81, 2799-2802.
http://dx.doi.org/10.1103/PhysRevLett.81.2799

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.