Share This Article:

Micromagnetic Investigation of Microwave Permeability of Magnetic Artificial Spin Ice

Abstract Full-Text HTML XML Download Download as PDF (Size:3193KB) PP. 991-995
DOI: 10.4236/msa.2014.514100    2,645 Downloads   2,937 Views  

ABSTRACT

The complex permeability of the artificial spin ice array at different magnetic states is calculated using the micromagnetic simulation method. It is observed that the permeability spectra are dependent on the magnetization distributions of the array. The dependence of the permeability spectrum on the applied magnetic field strength and on the spacing gap between the neighboring elements is also investigated. Depending on the initial magnetization saturating direction, the permeability spectrum exhibits different sensitivity to the strength of the external applied magnetic field and to the spacing distance between the comprising elements of the artificial spin ice array.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ma, F. , Wu, Y. and Zong, B. (2014) Micromagnetic Investigation of Microwave Permeability of Magnetic Artificial Spin Ice. Materials Sciences and Applications, 5, 991-995. doi: 10.4236/msa.2014.514100.

References

[1] Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H. and Schiffer, P. (2006) Artificial “Spin Ice” in a Geometrically Frustrated Lattice of Nanoscale Ferromagnetic Islands. Nature, 439, 303-306.
http://doi:10.1038/nature04447
[2] Heyderman, L.J. and Stamps, R.L. (2013) Artificial Ferroic Systems: Novel Functionality from Structure, Interactions and Dynamics. Journal of Physics: Condensed Matter, 25, 363201.
http://doi:10.1088/0953-8984/25/36/363201
[3] Nisoli, C., Moessner, R. and Schiffer, P. (2013) Colloquium: Artificial Spin Ice: Designing and Imaging Magnetic Frustration. Reviews of Modern Physics, 85, 1473-1490.
http://dx.doi.org/10.1103/RevModPhys.85.1473
[4] Tanaka, M., Saitoh, E., Miyajima, H., Yamaoka, T. and Iye, Y. (2006) Magnetic Interactions in a Ferromagnetic Honeycomb Nanoscale Network. Physical Review B, 73, 052411.
http://dx.doi.org/10.1103/PhysRevB.73.052411
[5] Donahue, M.J. and Porter, D.G. OOMMF User’s Guide, Version 1.0.
http://math.nist.gov/oommf/
[6] Gérardin, O., Ben Youssef, J., Le Gall, H., Vukadinovic, N., Jacquart, P.M. and Donahue, M.J. (2000) Micromagneics of the Dynamic Susceptibility for Coupled Permalloy Stripes. Journal of Applied Physics, 88, 5899-5903.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.1320011
[7] Dao, N., Donahue, M.J., Dumitru, I., Spinu, L., Whittenburg, S.L. and Lodder, J.C. (2004) Dynamic Susceptibility of Nanopillars. Nanotechnology, 15, S634-S638.
http://doi:10.1088/0957-4484/15/10/022
[8] Ma, F.S., Lim, H.S., Wang, Z.K., Piramanayagam, S.N., Ng, S.C. and Kuok, M.H. (2011) Micromagnetic Study of Spin Wave Propagation in Bicomponent Magnonic Crystal Waveguides. Applied Physics Letters, 98, 153107.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.3579531
[9] Ma, F.S., Lim, H.S., Wang, Z.K., Piramanayagam, S.N., Ng, S.C. and Kuok, M.H. (2012) Band Structures of Exchange Spin Waves in One-Dimensional Bi-Component Magnonic Crystals. Journal of Applied Physics, 111, 064326.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.3698617
[10] Gérardin, O., Le Gall, H., Donahue, M.J. and Vukadinovic, N. (2001) Micromagnetic Calculation of the High Frequency Dynamics of Nano-Size Rectangular Ferromagnetic Stripes. Journal of Applied Physics, 89, 7012.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.1360390

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.