Share This Article:

Characterization of an Epiphytic Bacterium Neptunomonas sp. BPy-1 on the Gametophytes of a Red Alga Pyropia yezoensis

Abstract Full-Text HTML XML Download Download as PDF (Size:3646KB) PP. 3652-3661
DOI: 10.4236/ajps.2014.524381    2,281 Downloads   2,751 Views   Citations

ABSTRACT

The established culture of gametophytes of the red alga Pyropia yezoensis (TU-1) is superficially colonized by epiphytic bacteria. By 16S rRNA sequencing, 6 bacterial species were identified, and a culturable bacterium, Neptunomonas sp. BPy-1, was isolated. The 16S rRNA sequences of BPy-1 showed 100% identity with that of Neptunomonas sp. 0536, a probiotic bacterium found in greenshell mussels in New Zealand. Physiological tests revealed that 22 characters were identical between BPy-1 and 0536, but that 4 characters differed. BPy-1 cannot grow in the artificial seawater used for the culture of gametophytes. BPy-1 can grow in the artificial seawater with ethanol or butanol but not in methanol or propanol. To determine the effect of BPy-1 on gametophyte growth, BPy-1 colonization was reduced by 80% using a multi-enzyme cleaner. Changing the cleaner concentration yielded two types of gametophytes, a compressed or callus-like form and a nearly normal form. BPy-1 promoted the growth of the treated gametophytes with relatively normal form, while it showed less effect on compressed gametophytes. These findings suggested that BPy-1 promotes the growth of damaged gametophytes but does not affect the development of normal gametophytes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Handayani, M. , Sasaki, H. , Matsuda, R. , Takechi, K. , Takano, H. and Takio, S. (2014) Characterization of an Epiphytic Bacterium Neptunomonas sp. BPy-1 on the Gametophytes of a Red Alga Pyropia yezoensis. American Journal of Plant Sciences, 5, 3652-3661. doi: 10.4236/ajps.2014.524381.

References

[1] Saga, N. (2012) Porphyra: Mode Plants in Marine Sciences. In: Mikami, K., Ed., Porphyra yezoensis: Frontiers in Physiological and Molecular Biological Research, Nova Science Publishers, New York, 1-14.
[2] Wu, X., Huang, A., Xu, M., Wang, C., Jia, Z., Wang, G. and Niu, J. (2013) Variation of Expression Levels of Seven Housekeeping Genes at Different Life-History Stages in Porphyra yezoensis. PLoS ONE, 8, e60740.
http://dx.doi.org/10.1371/journal.pone.0060740
[3] Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., Satomi, M., Fukuma, Y., Shiwaku, K., Tsujimoto, A., Kobayashi, T., Nakayama, I., Ito, F., Nakajima, K., Sano, M., Wada, T., Kuhara, S., Inouye, K., Gojobori, T. and Ikeo, K. (2013) The First Symbiont-Free Genome Sequence of a Marine Red Alga, Susabi-Nori (Pyropia yezoensis). PLoS ONE, 8, e57122. http://dx.doi.org/10.1371/journal.pone.0057122
[4] Yamazaki, A., Nakanishi, K. and Saga, N. (1998) Axenic Tissue Culture and Morphogenesis in Porphyra yezoensis (Bangiales, Rhodophyta). Journal of Phycology, 34, 1082-1087. http://dx.doi.org/10.1046/j.1529-8817.1998.341082.x
[5] Namba, A., Shigenobu, Y., Kobayashi, M., Kobayashi, T. and Oohara, I. (2010) A New Primer for 16S rDNA Analysis of Microbial Communities Associated with Porphyra yezoensis. Fisheries Science, 76, 873-878.
http://dx.doi.org/10.1007/s12562-010-0273-z
[6] Fukui, Y., Abe, M., Kobayashi, M., Yano, Y. and Satomi, M. (2014) Isolation of Hyphomonas Strains That Induce Normal Morphogenesis in Protoplasts of the Marine Red Alga Pyropia yezoensis. Microbial Ecology, 68, 556-566.
http://dx.doi.org/10.1007/s00248-014-0423-4
[7] Hollants, J., Leliaert, F., De Clerck, O. and Willems, A. (2013) What We Can Learn from Sushi: A Review on Seaweed-Bacterial Associations. FEMS Microbiology Ecology, 83, 1-16.
http://dx.doi.org/10.1111/j.1574-6941.2012.01446.x
[8] Nikaido, I., Asamizu, E., Nakajima, M., Nakamura, Y., Saga, N. and Tabata, S. (2000) Generation of 10,154 Expressed Sequence Tags from a Leafy Gametophyte of a Marine Red Alga, Porphyra yezoensis. DNA Research, 7, 223-227.
http://dx.doi.org/10.1093/dnares/7.3.223
[9] Burke, C., Kjelleberg S. and Thomas, T. (2009) Selective Extraction of Bacterial DNA from the Surfaces of Macroalgae. Applied and Environmental Microbiology, 75, 252-256. http://dx.doi.org/10.1128/AEM.01630-08
[10] Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.
[11] Barrow, G.I. and Feltham, R.K.A. (1993) Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd edition, Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511527104
[12] Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J. and Gibson, L. (2010) Alteromonas macleodii 0444 and Neptunomonas sp. 0536, Two Novel Probiotics for Hatchery-reared GreenshellTM Mussel Larvae, Perna canaliculus. Aquaculture, 309, 49-55. http://dx.doi.org/10.1016/j.aquaculture.2010.09.019
[13] Hedlund, B.P., Geiselbrecht, A.D. and Bair, T.J. (1999) Polycyclic Aromatic Hydrocarbon Degradation by a New Marine Bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Applied and Environmental Microbiology, 65, 251-259.
[14] Yuan, Z., Cang, S., Matsufuji, M., Nakata, K., Nagamatsu, Y. and Yoshimoto, A. (1998) High Production of Pyoluteorin and 2,4-Diacetylphloroglucinol by Pseudomonas fluorescens S272 Grown on Ethanol as a Sole Carbon Source. Journal of Fermentation and Bioengineering, 86, 559-563. http://dx.doi.org/10.1016/S0922-338X(99)80006-3
[15] Widdel, F. (1986) Growth of Methanogenic Bacteria in Pure Culture with 2-Propanol and Other Alcohols as Hydrogen Donors. Applied and Environmental Microbiology, 51, 1056-1062.
[16] Veeranagouda, Y., Vijaykumar, M.H., Patil, N.K., Nayak, A.S. and Karegoudar, T.B. (2006) Degradation of 1-Butanol by Solvent Tolerant Enterobacter sp. VKGH12. International Biodeterioration & Biodegradation, 57, 186-189.
http://dx.doi.org/10.1016/j.ibiod.2006.01.005
[17] Weschler, C.J. and Shields, H.C. (1996) Production of the Hydroxyl Radical in Indoor Air. Environmental Science & Technology, 30, 3250-3258. http://dx.doi.org/10.1021/es960032f
[18] John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011) Micro and Macroalgal Biomass: A Renewable Source for Bioethanol. Bioresour Technology, 102, 186-193. http://dx.doi.org/10.1016/j.biortech.2010.06.139
[19] Patel, P., Callow, M.E., Joint, I. and Callow, J.A. (2003) Specificity in the Settlement—Modifying Response of Bacterial Biofilms towards Zoospores of the Marine Alga Enteromorpha. Environmental Microbiology, 5, 338-349.
http://dx.doi.org/10.1046/j.1462-2920.2003.00407.x
[20] Lachnit, T., Meske, D., Wahl, M., Harder, T. and Schmitz, R. (2001) Epibacterial Community Patterns on Marine Macroalgae Are Host-specific but Temporally Variable. Environ Microbiology, 13, 655-665.
http://dx.doi.org/10.1111/j.1462-2920.2010.02371.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.