Share This Article:

Chromosome Elimination in Intergeneric Hybrid of Oryza sativa × Luziola peruviana

Abstract Full-Text HTML XML Download Download as PDF (Size:2756KB) PP. 1344-1350
DOI: 10.4236/as.2014.513144    2,927 Downloads   3,382 Views   Citations

ABSTRACT

Oryza sativa and Luziola peruviana present a diploid chromosome number of 2n = 24 and basic number x = 12, confirmed by means metaphase chromosomes counts in young root tips of these species. Hybrid plants O. sativa × L. peruviana, with 2n = 24 chromosomes are originated from simple crosses and present abnormalities in the meiotic behavior, chromosomal aberrations and cytological alteration. This genetic incompatibility is caused by different factors as absence of pairing and recombination, different spindles arrangements, cytoskeleton instability, apoptosis process and chromosomal elimination, leading to micronuclei formation, unbalanced gametes and sterile pollen grains. The chromosome elimination is established as a dynamic process of stabilization of the genome that occurs during hybridization. It is a common phenomenon among intergeneric crosses and corresponds to cytoplasmic and nuclear bodies that reflect chromosomal aberrations resulting from the combination of two genomes with high genetic distance. The genomic conflict occurs in meiosis, possibly by asynchronism and cell cycle length of the genomes involved, or by time differences in replication between parental species leading to strand breaks and genomic rearrangements.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Moreno, P. , Caetano, C. , Olaya, C. , Agrono, T. and Torres, E. (2014) Chromosome Elimination in Intergeneric Hybrid of Oryza sativa × Luziola peruviana. Agricultural Sciences, 5, 1344-1350. doi: 10.4236/as.2014.513144.

References

[1] Swallen, J. (1965) The Grass Genus Luziola. Annals of the Missouri Botanical Garden, 52, 472-475.
http://dx.doi.org/10.2307/2394812
[2] Pohl, W. and Davidse, G. (1971) Numbers of Costa Rican Grasses. Brittonia, 23, 293-324.
http://dx.doi.org/10.2307/2805632
[3] Vaughan, D., Morishima, H. and Kadowaki, K. (2003) Diversity in the Oryza Genus. Plant Biology, 6, 139-146.
[4] Sanabria, Y. (2006) Caracterización Morfológica, Citogenética y Molecular de una Accesión del Género Oryza y Evaluación de Introgresiones en Progenies F1, BC2 y BC3 Originadas de Cruces con Oryza sativa L. Tesis de Pregrado, Universidad del Tolima, Facultad de Ciencias Básicas, 90 p.
[5] Ohmido, N., Fukui, K. and Kinoshita, T. (2005) Advances in Rice Chromosomes Research. Proceedings Japan Academy, 81B, 382-392. http://dx.doi.org/10.2183/pjab.81.382
[6] Harrison, J., Alvey, E. and Henderson, L. (2010) Meiosis in Flowering Plants and Other Green Organisms. Journal of Experimental Botany, 61, 2863-2875. http://dx.doi.org/10.1093/jxb/erq191
[7] Pawlowski, W. (2010) Chromosome Organization and Dynamics in Plants. Plant Biology, 1, 640-645.
[8] Fu, X., Lu, Y., Liu, X., Li, J. and Feng, J. (2007) Cytological Mechanisms of Interspecific Incrossability and Hybrid Sterility between Oryza sativa L. and O. alta Swallen. Chinese Science Bulletin, 52, 755-765.
http://dx.doi.org/10.1007/s11434-007-0138-8
[9] Abbasi, F., Ahmad, H., Perveen, F., Inamullah, M., Sajid, M. and Brar, D. (2010) Assessment of Genomic Relationship between Oryza sativa and Oryza australinesis. African Journal of Biotechnology, 9, 1312-1316.
[10] Mendes, A., Pagliarini, M. and Borges, C. (2007) Meiotic Arrest Compromises Pollen Fertility in Aninterspecific Hybrid between Brachiaria ruziziensis × Brachiaria decumbens (Poaceae: Paniceae). Brazilian Archives of Biology and Technology, 50, 831-837.
[11] Cifuentes, M. (2007) Formación de polen no reducido en híbridos Trigo × Aegilops. Tesis Doctoral, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Agrónomos, 149 p.
[12] Kalinka, A., Achrem, M. and Rogalska, S. (2010) Cytomixis-Like Chromosomes/Chromatin Elimination from Pollen Mother Cells (PMCs) in Wheat-Rye Allopolyploids. Nucleus, 53, 69-83. http://dx.doi.org/10.1007/s13237-010-0002-0
[13] Chaudhary, H., Tayeng, T., Kaila, V. and Rather, S. (2013) Enhancing the Efficiency of Wide Hybridization Mediated Chromosome Engineering for High Precision Crop Improvement with Special Reference to Wheat × Imperata cylindrica System. Nucleus, 56, 7-14. http://dx.doi.org/10.1007/s13237-013-0077-5
[14] Xie, Q., Kang, H., Sparkes, D., Tao, S., Fan, X., Xu, L., Fan, X., Sha, L., Zhang, H., Wang, Y., Zeng, J. and Zhou, Y. (2013) Mitotic and Meiotic Behavior of Rye Chromosomes in Wheat—Psathyrostachys huashanica Amphiploid × Triticale Progeny. Genetics and Molecular Research, 12, 2537-2548. http://dx.doi.org/10.4238/2013.January.4.16
[15] Ishii, T., Ueda, T., Tanaka, H. and Tsujimoto, H. (2010) Chromosome Elimination by Wide Hybridization between Triticeae or Oat Plant and Pearl Millet: Pearl Millet Chromosome Dynamics in Hybrid Embryo Cells. Chromosome Research, 18, 821-831. http://dx.doi.org/10.1007/s10577-010-9158-3
[16] Houben, A., Sanei, M. and Pickering, R. (2011) Barley Doubled-Haploid Production by Uniparental Chromosome Elimination. Plant Cell, Tissue and Organ Culture, 104, 321-327. http://dx.doi.org/10.1007/s11240-010-9856-8
[17] Ge, X., Ding, L. and Li, Z. (2013) Nucleolar Dominance and Different Genome Behaviors in Hybrids and Allopolyploids. Plant Cell Reports, 32, 1661-1673. http://dx.doi.org/10.1007/s00299-013-1475-5

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.