Share This Article:

Thermodynamics of the Second Dissociation Constants (pK2) of Piperazine-N,N′-bis-2-hydroxypropanesulfonic Acid (POPSO Sesquisodium Salt) and Associated Thermodynamic Functions from (278.15 to 328.15) K

Abstract Full-Text HTML XML Download Download as PDF (Size:2687KB) PP. 143-151
DOI: 10.4236/jbpc.2014.54016    4,421 Downloads   4,824 Views   Citations

ABSTRACT

The second acidic dissociation constants of protonated piperazine-N,N′-bis-2-hydroxypropane-sulfonic acid (POPSO sesquisodium salt) have been determined at 12 different temperatures from (278.15 to 328.15) K including 310.15 K. Electromotive-force measurement technique was used employing hydrogen-silver chloride cells without liquid junction. The results of pK2 are given by the equation: pK2 = -1041.77/T + 51.0459 - 6.97646lnT. The uncertainty of the fit is ±0.0008. At 289.15 K, pK2 = 7.8029; whereas, at 310.15 K (body temperature), pK2 = 7.6862. Thus, the buffer solutions of POPSO and its sodium salt are useful for pH control in the physiological pH region of (7.0 to 8.5). The changes of Gibbs free energy (G°), enthalpy (H°), entropy (S°) and heat capacity Cp° were computed from the temperature derivative of the pK2 for the dissociation of the zwitterionic acid POPSO±-3 = POPSO-4 + H+ in the standard state. At 298.15 K, these results are compared with those of similar components, which are the derivatives of the parent compounds TAURINE, PIPERAZINE and MORPHOLINE.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Roy, R. , Roy, L. , Hundley, K. , Wehmeyer, T. and Tebbe, L. (2014) Thermodynamics of the Second Dissociation Constants (pK2) of Piperazine-N,N′-bis-2-hydroxypropanesulfonic Acid (POPSO Sesquisodium Salt) and Associated Thermodynamic Functions from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 143-151. doi: 10.4236/jbpc.2014.54016.

References

[1] Ferguson, W.J., Braunschweiger, K.L., Braunschweiger, W.R., Smith, J.R., McCormick, J.J., Wasman, C.C., Jarvis, N.P., Bell, D.H. and Good, N.E. (1980) Hydrogen Ion Buffers for Biological Research. Analytical Chemistry, 104, 300-310.
[2] Roy, R.N., Roy, L.N., Hundley, K.E., Dinga, J.J., Medcalf, M.R., Tebbe, L.S., Parmar, R.R. and Veliz, J.A. (2014) Acid Dissociation Constants and Related Thermodynamic Functions of Protonated 2, 2-Bis(hydroxymethyl)-2, 2′,2′′- Nitrilotriethanol (BIS-TRIS) from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 118-124.
http://dx.doi.org/10.4236/jbpc.2014.53013
[3] Roy, R.N., Roy, L.N., Dinga, J.J., Medcalf, M.R., Hundley, K.E., Hines, E.B., Summers, C.B., Tebbe, L.S. and Veliz, J.A. (2014) Dissociation Constant of N-(2-Acetamido)-iminodiacetic Acid Monosodium (ADA) from (278.15 to 328.15) K. Open Journal of Physical Chemistry, 4, 71-79.
http://dx.doi.org/10.4236/ojpc.2014.42011
[4] Roy, R.N., Roy, L.N., Dinga, J.J., Medcalf, M.R., Hundley, K.E., Hines, E.B., Parmar, R.R., Veliz, J.A., Summers, C.B. and Tebbe, L.S. (2014) Thermodynamics of the Second Stage Dissociation Step (pK2) of Buffer Monosodium 1,4-Piperazinediethanesulfonate from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 91-98.
http://dx.doi.org/10.4236/jbpc.2014.53010
[5] Hetzer, H.B., Robinson, R.A. and Bates, R.G. (1968) Dissociation Constants of Piperazinium Ion and Related Thermodynamic Quantities from 0 to 50?C. The Journal of Physical Chemistry, 72, 2081-2086.
http://dx.doi.org/10.1021/j100852a034
[6] Thiel, T., Liczkowski, L. and Bissen, S.T. (1998) New Zwitterionic Butanesulfonic Acids That Extend the Alkaline Range of Four Families of Good Buffers: Evaluation for Use in Biological Systems. Journal of Biochemical and Biophysical Methods, 37, 117-129.
http://dx.doi.org/10.1016/S0165-022X(98)00022-0
[7] Good, N.E., Winget, G.D., Winter, W., et al. (1966) Hydrogen Ion Buffers for Biological Research. Biochemistry Journal, 5, 467-477.
http://dx.doi.org/10.1021/bi00866a011
[8] Goldberg, R.N., Kishore, N. and Lennen, R.M. (2002) Thermodynamic Quantities for the Ionization Reactions of Buffers. Journal of Physical Chemistry Reference Data, 31, 231-370.
http://dx.doi.org/10.1063/1.1416902
[9] Roy, R.N., Roy, L.N., Simon, A.N., Moore, A.C., Seing, L.A., Richards, S.J., Craig, H.D., Childers, B.A., Tabor, B.J., Himes, C.A. and Viele, K.E. (2004) Thermodynamics of the Second Dissociation Constant of N-Tris[hydroxymethyl]- 4-aminobutanesulfonic Acid (TABS) from 5 to 55?C. Journal of Solution Chemistry, 33, 353-364.
http://dx.doi.org/10.1023/B:JOSL.0000036306.61494.e2
[10] Roy, R.N., Carlsten, A., Niederschmidt, J., Good, W.S., Rook, J.M., Brewe, C., Kilker, A.J., Roy, L.N. and Kuhler, K.M. (1997) Buffers for the Physiological pH Range: Thermodynamic Constants of Substituted Aminopropanesulfonic Acids (AMPSO) and (DIPSO) from 5?C to 55?C. Journal of Solution Chemistry, 26, 309-317.
http://dx.doi.org/10.1007/BF02768001
[11] Roy, R.N., Grant, J.G., Roy, L.N., Cummins, M.P., Tabor III, B.J., Richards, S.J., et al. (2002) Second Dissociation Constants of N-[4-Morpholino]butanesulfonic Acid and N-[2-Hydroxymethyl]piperazine-N’-4-butanesulfonic Acid from 5 to 55?C. Journal of Solution Chemistry, 31, 861-872.
http://dx.doi.org/10.1023/A:1021459621374
[12] Roy, L.N., Roy, R.N., Denton, C.E., LeNoue, S.R., Roy, C.N., Ashkenazi, S., et al. (2006) Second Dissociation Constant of Bis-[(2-hydroxyethyl)amino]acetic Acid (BICINE) and pH of Its Buffer Solutions from 5 to 55?C. Journal of Solution Chemistry, 35, 605-624.
http://dx.doi.org/10.1007/s10953-005-9009-6
[13] Ives, D.J.G. and Moseley, P.G.N. (1975) Derivation of Thermodynamic Functions of Ionization from Acidic Dissociation Constants. Journal Chemical Society, 72, 1132-1143.
[14] Please, N.W. (1954) Estimation of the Variances of the Data Used in the Calculation of Dissociation Constants. Biochemistry Journal, 56, 196-201.
[15] Azab, H.A. and Aboul Nour, K.M. (1999) Medium Effect on the Apparent Second Stage Dissociation Constants of Some Zwitterioni Buffers for Physiological Research in Various Water + Organic Solvent Mixtures. Journal of Chemical and Engineering Data, 44, 678-683.
http://dx.doi.org/10.1021/je980313y
[16] Alies, B., Pradines, V., Llorens-Alliot, I., Sayen, S., Guillon, E., Hureau, C. and Faller, P. (2010) Zinc(II) Modulates Specifically Amyloid Formation and Structure in Model Peptides. Journal of Biological Inorganic Chemistry, 16, 333- 340.
http://dx.doi.org/10.1007/s00775-010-0729-8
[17] Vasconcelos, M., Teresa, S.D., Almeida, C. and Marisa, R. (1998) Electrochemical Study of Proton Ionization, Copper (II) Complexation and Surfactant Properties of Piperazine-N-N-bis[2-hydroxypropanesulfonic acid] pH Buffer: Comparison with Other N-Substituted Aminosulfonic Acids pH Buffers. Analytica Chimica Acta, 369, 115-122.
http://dx.doi.org/10.1016/S0003-2670(98)00239-6
[18] Roy, R.N., Roy, L.N., Denton, C., LeNoue, S., Fuge, M., Dunseth, C., Roy, C., Bwashi, A., Wollen, J. and DeArmon, S. (2009) Buffer Standards for the Physiological pH of 3-[(1,1-Dimethyl-2-hydroxymethyl)amino]-2-hydroxypropane- sulfonic Acid (AMPSO) from (278.15 to 328.15) K. Journal of Chemical Engineering Data, 54, 428-435.
http://dx.doi.org/10.1021/je8004563
[19] Vega, C. and Bates, R. (1976) Buffers for the Physiological pH Range: Thermodynamic Constants of Four Substituted Aminoethansul-Fonic Acids from 5 to 50?C. Analytical Chemistry, 48, 1293-1295.
http://dx.doi.org/10.1021/ac50003a010
[20] Hetzer, H.B., Bates, R.G. and Robinson, R.A. (1966) Dissociation Constant of Morpholinium Ion and Related Thermodynamic Quantities from 0 to 55?. The Journal of Physical Chemistry, 70, 2869-2872.
http://dx.doi.org/10.1021/j100881a024
[21] Roy, R.N., Gibbons, J.J., Padron, L.J. and Moeller, J. (1980) Second-Stage Dissociation Constants of Piperazine- N-N’-bis(2-ethanesulfonic acid) Monosodium Monohydrate and Related Thermodynamic Functions in Water from 5 to 55?C. Analytical Chemistry, 52, 2409-2412.
http://dx.doi.org/10.1021/ac50064a040
[22] Bates, R.G. and Allen, G.F. (1960) Acid Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water from 0 to 50?C. Journal of Research of the National Bureau of Standards, 64A, 343-346.
http://dx.doi.org/10.6028/jres.064A.033
[23] Roy, R.N., Moore, C.P., Carlsten, J.A., Good, W.S., Harris, P., Rook, J.M., Roy, L.N. and Kuhler, K.M. (1997) Second Dissociation Constants of Two Substituted Aminoethanesulfonic Acids (MES) and (TES) in Water from 5 to 55?C. Journal of Solution Chemistry, 26, 1209-1216.
http://dx.doi.org/10.1023/A:1022937324983
[24] Roy, R.N., Robinson, R.A. and Bates R.G. (1973) Thermodynamic of the Two Dissociation Steps of N-Tris(hydroxyl- methyl)methylglycine (“Tricine”) in Water from 5 to 55?C. Journal of the American Chemical Society, 95, 8231-8235.
http://dx.doi.org/10.1021/ja00806a004
[25] Bates, R.G. (1973) Determination of pH. Wiley, New York.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.