Share This Article:

Unsymmetrical Fibre-Reinforced Plastics for the Production of Curved Textile Reinforced Concrete Elements

Abstract Full-Text HTML XML Download Download as PDF (Size:3798KB) PP. 191-200
DOI: 10.4236/ojcm.2014.44021    3,838 Downloads   4,559 Views   Citations

ABSTRACT

A new constructive and technological approach was developed for the efficient production of large-dimensioned, curved freeform formworks, which allow the manufacturing of single and double-curved textile reinforced concrete elements. The approach is based on a flexible, multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). Using the unusual structural behavior caused by anisotropy, these GFRP formwork elements permit a specific adjustment of defined curvature. The system design of the developed GFRP formwork and the concrete-lightweight-elements with stabilized spacer fabric was examined exhaustively. Prototypical curved freeform surfaces with different curvature radii were designed, numerically computed and produced. Furthermore, the fabric’s contour accuracy of the fabric was verified, and its integration was adjusted to loads.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Funke, H. , Gelbrich, S. , Ehrlich, A. , Ulke-Winter, L. and Kroll, L. (2014) Unsymmetrical Fibre-Reinforced Plastics for the Production of Curved Textile Reinforced Concrete Elements. Open Journal of Composite Materials, 4, 191-200. doi: 10.4236/ojcm.2014.44021.

References

[1] Curbach, M. and Scheerer, S. (2011) Concrete Light—Possibilities and Visions. In: Sruma, V., Ed., Proceedings of the fib Symposium Prague 2011: Concrete Engineering for Excellence and Efficiency, Prague, 8-10 June 2011, 29-44.
[2] Brameshuber, W. (2006) Textile Reinforced Concrete. RILEM Report 36. State-of-the-Art Report of RILEM Technical Committee, TC 201-TRC.
[3] Funke, H., Gelbrich, S., Ehrlich, A. and Kroll, L. (2014) Rheological and Mechanical Development of a Fiber-Reinforced Concrete for an Application in Civil Engineering. SOJ Materials Science & Engineering, 2, 1-4. http://dx.doi.org/10.15226/sojmse
[4] Hofstadler, C. (2008) Schalarbeiten. Springer-Verlag, Berlin, Heidelberg.
[5] Curbach, M. and Jesse, F. (2009) Verstarken mit Textilbeton. In: Bergmeister, K., Fingerloos, F. and Worner, J.-D., Eds., Betonkalender 2010, Teil 1, Abschn. VII. Ernst & Sohn, Berlin.
[6] Funke, H., Gelbrich, S., Ehrlich, A. and Kroll, L. (2014) A Fibre-Reinforced Architectural Concrete for the Newly Designed Facade of the Poseidon Building in Frankfurt am Main. Journal of Materials Science Research, 3, 33-39. http://dx.doi.org/10.5539/jmsr.v3n3p33
[7] Greiner, S. (2007) Zum Tragverhalten von Schalen aus ultrahochfestem Faserfeinkornbeton (UHFFB). Z. Betonund Stahlbetonbau, 100, 77-80.
[8] Funke, H., Gelbrich, S. and Ehrlich, A. (2013) Development of a New Hybrid Material of Textile Reinforced Concrete and Glass Fibre Reinforced Plastic. In: Hufenbach, W.A. and Gude, M., Eds., Procedia Materials Science, Materials Science Engineering, Symposium B6—Hybrid Structures, 2, 103-110.
[9] Curbach, M., Ortlepp, S., Brückner, A., Kratz, M., Offermann, P. and Engler, T. (2003) Entwicklung Einer Grobformatigen, Dünnwandigen, Textilbewehrten Fassadenplatte. Z. Betonund Stahlbetonbau, 98, 345-350. http://dx.doi.org/10.1002/best.200301720
[10] Herzog, T. and Moro, J.L. (1992) Gesprach mit Felix Candela. In: Arcus 18: Zum Werk von Felix Candela—Die Kunst der leichten Schalen, Verlagsgesellschaft Rudolph Müller, Koln, 10-22.
[11] Preisinger, C., Harrer, J., Ressl, C. and Kollegger, J. (2005) Stahlbetonschalen ohne Schalung—Ein neuer Weg im Schalenbau. Betonund Stahlbetonbau, 100, 31-38.
http://dx.doi.org/10.1002/best.200590005
[12] Kroll, L. (2005) Berechnung und technische Nutzung von anisotropiebedingten Werkstoff—Und Struktureffekten für multifunktionale Leichtbauanwendungen. Habilitationsschrift, TU Dresden, Dres-
den.
[13] Kaufmann, J. (2014) Beitrag zu anisotropiebedingten Koppeleffekten bei rotationssymmetrischen mehrschichtigen Faserverbundbauteilen. Promotionsschrift, TU Chemnitz, Chemnitz.
[14] Dallinger, S., Pardatscher, H. and Kollegger, J. (2009) Zweifach gekrümmte Schalen aus Betonfertigteilen. Z. Forschung & Entwicklung für Zement und Beton, 5, 32-33.
[15] Zapf, W. (1990) Schalung für grobformatige gekrümmte Stahlbetonfertigteile. German Patent No. DE 3841579 A1.
[16] Henri, V. (1987) Verfahren und Vorrichtung zum Formen von gebogenen Sektionen aus Beton. European Patent No. EP 0 238 168 A1.
[17] Schürmann, H. (2007) Konstruieren mit Faser-Kunststoff-Verbunden, Springer Verlag, Berlin, Heidelberg, New York.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.