Share This Article:

Does the Homogeneous Ice Nucleation Initiate in the Bulk Volume or at the Surface of Super-Cooled Water Droplets? A Review

Abstract Full-Text HTML Download Download as PDF (Size:2715KB) PP. 653-664
DOI: 10.4236/acs.2014.44058    3,901 Downloads   4,492 Views   Citations

ABSTRACT

The formation of ice in clouds can occur through primary processes, either homogeneously or heterogeneously triggered by aerosol particles called ice nuclei, as well as through secondary processes. The homogeneous ice nucleation process involves only pure water or solution droplets. Homogeneous freezing is crucial for the microphysics in the formation of high-altitude cirrus and polar stratospheric clouds, and also in the glaciation of thunderclouds, at temperatures below about 235 K. Nucleation rates in supercooled water have been measured using different experimental techniques: expansion cloud chambers, water-in-oil emulsions, levitation methods, free falling droplets, supersonic nozzles, field measurements, and molecular dynamics simulations. An important question concerns the possibility that the nucleation process in supercooled water can occur not only in the interior volume of the droplet, but even at or close to its surface. Even if there is no conclusive evidence, the majority of experimental and theoretical results suggest that the contribution of surface nucleation increases with decreasing radius of the supercooled droplets, and the surface (or sub-surface) nucleation rate is prevalent for droplets with radius lower than about 5 μm. If homogeneous freezing initiates at the droplet surface, the freezing rate should depend on the droplet size, and even a slight contamination by molecules within the surface layer could hamper the rate of the nucleation process.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Santachiara, G. and Belosi, F. (2014) Does the Homogeneous Ice Nucleation Initiate in the Bulk Volume or at the Surface of Super-Cooled Water Droplets? A Review. Atmospheric and Climate Sciences, 4, 653-664. doi: 10.4236/acs.2014.44058.

References

[1] Pruppacher, H.R. and Klett, J.D. (1997) Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht.
[2] Santachiara, G., Belosi, F. and Prodi, F. (2014) The Mystery of Ice Crystal Multiplictaion in a Laboratory Experiment. Journal Atmospheric Sciences, 71, 89-97. http://dx.doi.org/10.1175/JAS-D-13-0117.1
[3] Rosenfeld, D. and Woodley, W. (2000) Deep Convective Clouds with Sustained Supercooled Liquid Water Down to -37.5°C. Nature, 405, 440-442. http://dx.doi.org/10.1038/35013030
[4] Heymsfield, A., Schmitt, C., Bansemer, A., Twohy, C., Poellot, M., Fridlind, A. and Gerber, H. (2005) Homogeneous Ice Nucleation in Subtropical and Tropical Convection and Its Influence on Cirrus Anvil Microphysics. Bulletin of American Meteorological Society, 62, 41-64.
[5] Cziczo, D.J., et al. (2013) Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 340, 1320-1324. http://dx.doi.org/10.1126/science.1234145
[6] Zuberi, B., Bertram, A.K., Cassa, C.A., Molina, L.M. and Molina, M.J. (2002) Heterogeneous Nucleation of Ice in (NH4)2SO4-H2O Particles with Mineral Dust Immersions. Geophysical Research Letters, 29, 142-1-142-4. http://dx.doi.org/10.1029/2001GL014289
[7] DeMott, P.J., et al. (2003) African Dust Aerosols as Atmospheric Ice Nuclei. Geophysical Research Letters, 30, 1732. http://dx.doi.org/10.1029/2003GL017410
[8] Vardiman, L. (1978) The Generation of Secondary Ice Particles in Clouds by Crystal Collision. Journal of the Atmospheric Sciences, 35, 2168-2180.
http://dx.doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2
[9] Oraltay, R.G. and Hallett, J. (1989) Evaporation and Melting of Ice Crystals: A Laboratory Study. Atmospheric Research, 24, 169-189. http://dx.doi.org/10.1016/0169-8095(89)90044-6
[10] Hobbs, P.V. and Alkezweeny, A.J. (1968) The Fragmentation of Freezing Water Droplets in Free Fall. Journal of the Atmospheric Sciences, 25, 881-888.
http://dx.doi.org/10.1175/1520-0469(1968)025<0881:TFOFWD>2.0.CO;2
[11] Hallett, J. and Mossop, S.C. (1974) Production of Secondary Ice Particles during the Riming Process. Nature, 249, 26-28. http://dx.doi.org/10.1038/249026a0
[12] Szyrmer, W. and Zawadzki, I. (1997) Biogenic and Anthropogenic Sources of Ice-Forming Nuclei: A Review. Bulletin of the American Meteorological Society, 78, 209-228.
http://dx.doi.org/10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2
[13] Cantrell, W. and Heymsfield, A. (2005) Production of Ice in Tropospheric Clouds. Bulletin of the American Meteorological Society, 86, 795-807. http://dx.doi.org/10.1175/BAMS-86-6-795
[14] Hoose, C. and Mohler, O. (2012) Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results from Laboratory Experiments. Atmospheric Chemistry and Physics, 12, 9817-9854.
http://dx.doi.org/10.5194/acp-12-9817-2012
[15] Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L. and Grothe, H. (2012) Ice Structures, Patterns, and Processes: A View across the Icefields. Reviews of Modern Physics, 84, 885-944. http://dx.doi.org/10.1103/RevModPhys.84.885
[16] Murray, B.J., O’Sullivan, D., Atkinson, J.D. and Webb, M.E. (2012) Ice Nucleation by Particles Immersed in Supercooled Cloud Droplets. Chemical Society Reviews, 41, 6519-6554.
http://dx.doi.org/10.1039/c2cs35200a
[17] Butorin, G.T. and Skripov, V.P. (1972) Crystallization of Supercooled Water. Krisallografiya, 17, 379-384.
[18] Taborek, P. (1985) Nucleation in Emulsified Supercooled Water. Physical Review B, 32, 5902-5906. http://dx.doi.org/10.1103/PhysRevB.32.5902
[19] Kramer, B., Earle, M.E., Khalizov, F., Leisner, J.J., Schwell, M., Rühl, E. and Baumgartel, H. (1999) Homogeneous Nucleation Rates of Supercooled Water Measured in Single Levitated Droplets. The Journal of Chemical Physics, 111, 6521-6527. http://dx.doi.org/10.1063/1.479946
[20] Stan, C.A., Schneider, G.F., Shevkoplyas, S.S., Hashimoto, M., Ibanescu, M., Wiley, B.J. (2009) A Microfluidic Apparatus for the Study of Ice Nucleation in Supercooled Water Drops. Lab on a Chip, 9, 2293-2305. http://dx.doi.org/10.1039/b906198c
[21] DeMott, P.J. and Rogers, D.C. (1990) Freezing Nucleation Rates of Dilute Solution Droplets Measured between -30°C and -40°C in Laboratory Simulations of Natural Clouds. Journal of Atmospheric Sciences, 47, 1056-1064. http://dx.doi.org/10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2
[22] Stockel, P., Weidinger, I.M., Baumgartel, H. and Leisner, T. (2005) Rates of Homogeneous Ice Nucleation in Levitated H2O and D2O Droplets. Journal of Physical Chemistry A, 109, 2540-2546. http://dx.doi.org/10.1021/jp047665y
[23] Karcher, B. and Lohmann, U. (2002) A Parameterization of Cirrus Cloud Formation: Homogeneous Freezing of Supercooled Aerosols. Journal of Geophysical Research: Atmospheres, 107, AAC401-AAC410.
[24] Liu, X. and Penner, J.E. (2005) Ice Nucleation Parameterization for Global Models. Meteorologische Zeischrift, 14, 499-514. http://dx.doi.org/10.1127/0941-2948/2005/0059
[25] Earle, M.E., Kuhn, T., Khalizov, A.F. and Sloan, J.J. (2010) Volume Nucleation Rates for Homogeneous Freezing in Supercooled Water Microdroplets: Results from a Combined Experimental and Modelling Approach. Atmospheric Chemistry and Physics, 10, 7945-7961. http://dx.doi.org/10.5194/acp-10-7945-2010
[26] Barlow, T.W. and Haymet, A.D.J. (1995) ALTA: An Automated Lag-Time Apparatus for Studying the Nucleation of Supercooled Liquids. Review of Scientific Instruments, 66, 2996-3007.
http://dx.doi.org/10.1063/1.1145586
[27] Baumgartel, H. and Zimmermann, H.W. (2011) The Homogeneous Nucleation in Supercooled Water. An Examination Using Statistics and Irreversible Thermodynamics. Journal of Molecular Liquids, 164, 178-186. http://dx.doi.org/10.1016/j.molliq.2011.09.007
[28] Manka, A., Pathak, H., Tanimura, S., Wolk, J., Strey, R. and Wyslouzil, B.A. (2012) Freezing Water in No-Man’s Land. Physical Chemistry Chemical Physics, 14, 4505-4516.
http://dx.doi.org/10.1039/c2cp23116f
[29] Tabazadeh, A., Djikaev, Y.S. and Reiss, H. (2002) Surface Crystallization of Supercooled Water in Clouds. Proceedings of the National Academy of Sciences of the United States of America, 99, 15873-15878. http://www.pnas.org/ http://dx.doi.org/10.1073/pnas.252640699
[30] Salcedo, D. (2000) Freezing of Sulphuric and Nitric Acid Solutions: Implications for Polar Stratospheric Cloud Formation. Ph.D. Thesis, Massachusset Institute of Technology, Cambridge.
[31] Pruppacher, H.R. (1995) A New Look at Homogeneous Ice Nucleation in Supercooled Water Drops. Journal of the Atmospheric Sciences, 52, 1924-1933.
http://dx.doi.org/10.1175/1520-0469(1995)052<1924:ANLAHI>2.0.CO;2
[32] Kuhn, T., Earle, M.E., Khalizov, A.F. and Sloan, J.J. (2011) Size Dependence of Volume and Surface Nucleation Rates for Homogeneous Freezing of Supercooled Water Droplets. Atmospheric Chemistry and Physics, 11, 2853-2861. http://dx.doi.org/10.5194/acp-11-2853-2011
[33] Rzesanke, D., Nadolny, J., Duft, D., Müller, R., Kiselev, A. and Leisner, T. (2012) On the Role of Surface Charges for Homogenoeus Freezing of Supercooled Water Microdroplets. Physical Chemistry Chemical Physics, 14, 9359-9363. http://dx.doi.org/10.1039/c2cp23653b
[34] Wood, G.R. and Walton, A.G. (1970) Homogeneous Nucleation Kinetics of Ice from Water. Journal of Applied Physics, 41, 3027-3036. http://dx.doi.org/10.1063/1.1659359
[35] Inada T., Koyama, T., Goto, F. and Seto, T. (2011) Ice Nucleation in Emulsified Aqueous Solutions of Antifreeze Protein Type III and Poly(vinyl Alcohol). Journal of Physical Chemistry B, 115, 7914-7922. http://dx.doi.org/10.1021/jp111745v
[36] Anderson, R.J., Miller, R.C., Kassner, J.L. and Hagen, D.E. (1980) A Study of Homogeneous Condensation-Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber. Journal of the Atmospheric Sciences, 37, 2508-2520.
http://dx.doi.org/10.1175/1520-0469(1980)037<2508:ASOHCF>2.0.CO;2
[37] Hagen, D.E., Anderson, R.J. and Kassner Jr., J.L. (1981) Homogeneous Condensation—Freezing Nucleation Rate Measurements for Small Water Droplets in an Expansion Cloud Chamber. Journal of the Atmospheric Sciences, 38, 1236-1243.
http://dx.doi.org/10.1175/1520-0469(1981)038<1236:HCNRMF>2.0.CO;2
[38] Koop, T., Huey, P.N., Molina, L.T. and Molina, M.J. (1998) A New Optical Techinique to Study Aerosol Phase Transitions: The Nucleation of Ice from H2SO4 Aerosols. Journal of Physical Chemistry A, 102, 8924-8931. http://dx.doi.org/10.1021/jp9828078
[39] Murray, B.J., Broadley, S.L., Wilson, T.W., Bull, S.J., Wills, R.H., Christenson, H.K. and Murray, E.J. (2010) Kinetics of the Homogeneous Freezing of Water. Physical Chemistry Chemical Physics, 12, 10380-10387. http://dx.doi.org/10.1039/c003297b
[40] Lü, Y.J., Xie, W.J. and Wei, B. (2005) Observation of Ice Nucleation in Acoustically Levitated Water Droplets. Applied Physics Letters, 87, Article ID: 184107. http://dx.doi.org/10.1063/1.2126801
[41] Sassen, K. and Dodd, G.C. (1988) Homogeneous Nucleation Rate for Highly Supercooled Cirrus Cloud Droplets. Journal of the Atmospheric Sciences, 45, 1357-1369. http://dx.doi.org/10.1175/1520-0469(1988)045<1357:HNRFHS>2.0.CO;2
[42] Heymsfield, A.J. and Miloshevich, L.M. (1993) Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds. Journal of the Atmospheric Sciences, 50, 2335-2353.
http://dx.doi.org/10.1175/1520-0469(1993)050<2335:HINASL>2.0.CO;2
[43] Tabazadeh, A., Djikaev, Y.S., Hamill, P. and Reiss, H. (2002) Laboratory Evidence for Surface Nucleation of Solid Polar Stratospheric Cloud Particles. Journal of Physical Chemistry A, 106, 10238-10246. http://dx.doi.org/10.1021/jp021045k
[44] Disselkamp, R.S., Anthony, S.E., Prenni, A.J., Onasch, T.B. and Tolbert, M.A. (1996) Crystallization Kinetics of Nitric Acid Dihydrate Aerosols. Journal of Physical Chemistry, 100, 9127-9137.
http://dx.doi.org/10.1021/jp953608g
[45] Anthony, S.E., Onasch, T.B., Tisdale, R.T., Disselkamp, R.S. and Tolbert, M.A. (1997) Laboratory Studies of Ternary H2SO4/HNO3/H2O Particles: Implications for Polar Stratospheric Cloud Formation. Journal of Geophysical Research: Atmospheres, 102, 19777-10784.
http://dx.doi.org/10.1029/96JD03129
[46] Tisdale, R.T., Middlebrook, A.M., Prenni, A.J. and Tolbert, M.A. (1997) Crystallization Kinetics of HNO3/H2O Films Representative of Polar Stratospheric Clouds. Journal of Physical Chemistry A, 101, 2112-2119. http://dx.doi.org/10.1021/jp9624156
[47] Prenni, A.J., Onash, T.B., Tisdale, R.T., Siefert, R.L. and Tolbert, M.A. (1998) Composition-Dependent Freezing Nucleation Rate for HNO3/H2O Aerosols Resembling Gravity-Wave-Perturbed Stratospheric Particles. Journal of Geophysical Research: Atmospheres, 103, 28439-28450.
http://dx.doi.org/10.1029/98JD02851
[48] Salcedo, D., Molina, L.T. and Molina, M.J. (2001) Homogeneous Freezing of Concentrated Aqueous Nitric Acid Solutions at Polar Stratospheric Temperatures. Journal of Physical Chemistry A, 105, 1433-1439. http://dx.doi.org/10.1021/jp001639s
[49] Duft, D. and Leisner, T. (2004) Laboratory Evidence for Volume-Dominated Nucleation of Ice in Supercooled Water Microdroplets. Atmospheric Chemistry and Physics, 4, 1997-2000.
http://dx.doi.org/10.5194/acp-4-1997-2004
[50] Bauerecker, S., Ulbig, P., Buch, V., Vrbka, L. and Jungwirth, P. (2008) Monitoring Ice Nucleation in Pure and Salty Water via High-Speed Imaging and Computer Simulations. The Journal of Physical Chemistry C, 112, 7631-7636. http://dx.doi.org/10.1021/jp711507f
[51] Hindmarsh, J.P., Russel, A.B. and Chen, X.D. (2007) Observation of the Surface and Volume Nucleation Phenomena in Undercooled Sucrose Solution Droplets. The Journal of Physical Chemistry C, 111, 5977-5981. http://dx.doi.org/10.1021/jp0668302
[52] Satoh, I., Fushinobu, K. and Hashimoto, Y. (2002) Freezing of a Water Droplet Due to Evaporation—Heat Transfer Dominating the Evaporation-Freezing Phenomena and the Effect of Boiling on Freezing Characteristics. International Journal of Refrigeration, 25, 226-234. http://dx.doi.org/10.1016/S0140-7007(01)00083-4
[53] Shaw, R.A. and Lamb, D. (1999) Homogeneous Freezing of Evaporating Cloud Droplets. Geophysical Research Letters, 26, 1181-1184. http://dx.doi.org/10.1029/1999GL900170
[54] Wood, S.E., Baker, M.B. and Swanson, B.D. (2002) Instrument for Studies of Homogeneous and Heterogeneous Ice Nucleation in Free-Falling Supercooled Water Droplets. Review of Scientific Instruments, 73, 3988-3986. http://dx.doi.org/10.1063/1.1511796
[55] Benz, S., Megahed, K., Mohler, O., Saathoff, H., Wagner, R. and Schurath, U. (2005) T-Dependent Rate Measurements of Homogeneous Ice Nucleation in Cloud Droplets Using a Large Atmospheric Simulation Chamber. Journal of Photochemistry and Photobiology A: Chemistry, 176, 208-217.
[56] Benz, S., Mohler, O., Wagner, R., Schnaiter, M. and Leisner, T. (2009) Does the Homogeneous Ice Nucleation Initiate at the Surface or in the Volume of Super-Cooled Water Droplets? Geophysical Research Abstract, 11, EGU2009-9025
[57] Ciobanu, V.G., Marcolli, C., Krieger, U., Zuend, A. and Peter, T. (2010) Efflorescence of Ammonium Sulfate and Coated Ammonium Sulfate Particles: Evidence for Surface Nucleation. The Journal of Physical Chemistry A, 114, 9486-9495. http://dx.doi.org/10.1021/jp103541w
[58] Huang, J. and Bartell, L.S. (1995) Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters. The Journal of Physical Chemistry, 99, 3924-3931. http://dx.doi.org/10.1021/j100012a010
[59] Sigurbjornsson, O.F. and Signorell, R. (2008) Volume versus Surface Nucleation in Freezing Aerosols. Physical Review E, 77, Article ID: 051601. http://dx.doi.org/10.1103/PhysRevE.77.051601
[60] Bartell, L.S. and Chushak, Y.G. (2003) In Water in Confining Geometries. Buch, V. and Devlin, J.P., Eds., Springer-Verlag, Berlin & Heidelberg.
[61] Koop, T. (2004) Homogeneous Ice Nucleation in Water and Aqueous Solutions. Zeitschrift für Physikalische Chemie, 218, 1231-1258. http://dx.doi.org/10.1524/zpch.218.11.1231.50812
[62] Chushak, Y.G. and Bartell, L.S. (1999) Simulations of Spontaneous Phase Transitions in Large, Deeply Supercooled Clusters of SeF6. The Journal of Physical Chemistry B, 103, 11196-11204.
http://dx.doi.org/10.1021/jp992818g
[63] Chushak, Y.G. and Bartell, L.S. (2000) Crystal Nucleation and Growth in Large Clusters of SeF6 from Molecular Dynamics Simulations. The Journal of Physical Chemistry A, 104, 9328-9336.
http://dx.doi.org/10.1021/jp002107e
[64] Zasetsky, A.Y., Remorov, R. and Svishchev, I.M. (2007) Evidence of Enhanced Local Order and Clustering in Supercooled Water near Liquid-Vapor Interface: Molecular Dynamic Simulations. Chemical Physics Letters, 435, 50-53. http://dx.doi.org/10.1016/j.cplett.2006.12.043
[65] Turner, G.W. and Bartell, L.S. (2005) On the Probability of Nucleation at the Surface of Freezing Drops. The Journal of Physical Chemistry A, 109, 6877-6879. http://dx.doi.org/10.1021/jp058098x
[66] Pluharová, E., Vrbka, L. and Jungwirth, P. (2010) Effect of Surface Pollution on Homogeneous Ice Nucleation: A Molecular Dynamics Study. The Journal of Physical Chemistry C, 114, 7831-7838. http://dx.doi.org/10.1021/jp9090238
[67] Vrbka, L. and Jungwirth, P. (2006) Homogeneous Freezing of Water Starts in the Surface. The Journal of Physical Chemistry B, 110, 18126-18129. http://dx.doi.org/10.1021/jp064021c
[68] DeMott, P.J., Cziczo, D.J., Prenni, A.J., Murphy, D.M., Kreidenweis, S.M., Thomson, D.S., Borys, R. and Rogers, D.C. (2003) Measurements of the Concentration and Composition of Nuclei for Cirrus Formation. Proceedings of the National Academy of Sciences of the United States of America, 100, 14655-14660. http://dx.doi.org/10.1073/pnas.2532677100
[69] Mohler, O., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Schneider, J., Walter, S., Ebert, V. and Wagner, S. (2008) The Effect of Organic Coating on the Heterogenous Efficiency of Mineral Dust Aerosols. Environmental Research Letters, 3, 1-8.
[70] Shaw, R.A., Durant, A.J. and Mi, Y. (2005) Heterogeneous Surface Crystallization Observed in Undercooled Water. The Journal of Physical Chemistry B, 109, 9865-9868.
http://dx.doi.org/10.1021/jp0506336
[71] Durant, A.J. and Shaw, R.A. (2005) Evaporation Freezing by Contact Nucleation Inside-Out. Geophysical Research Letters, 32, Published Online. http://dx.doi.org/10.1029/2005GL024175

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.