Share This Article:

Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM

Abstract Full-Text HTML Download Download as PDF (Size:178KB) PP. 244-249
DOI: 10.4236/jbnb.2011.23031    4,842 Downloads   7,619 Views   Citations

ABSTRACT

The interaction of proteins with solid surfaces is a fundamental phenomenon in the biomaterials field. We investigated, using atomic force microscopy (AFM), the interactions of a recombinant amelogenin with titanium, a biphasic calcium phosphate (BCP) and mica. The unbinding processes were compared to those of an earlier studied protein, namely fibrinogen. Force spectroscopy (AFM) experiments were carried out at 0 ms, 102 ms, 103 ms and 104 ms of contact time. In general, the rupture forces increased as a function of interaction time. The unbinding forces of amelogenin interacting with the BCP surface were always stronger than those of the amelogenin-titanium system. The unbinding forces of fibrinogen interacting with the BCP surface were always much stronger than those of the fibrinogen-titanium system. For the most part, this study provides direct evidence that recombinant amelogenin binds more strongly than fibrinogen on the studied substrates.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Richert, A. Boukari, S. Berner, M. Dard and J. Hemmerlé, "Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 3, 2011, pp. 244-249. doi: 10.4236/jbnb.2011.23031.

References

[1] J. J. Gray, “The interaction of proteins with solid surfaces,” Curr Opin Struct Biol, Vol. 14, 2004, pp. 110-115.
[2] S. Faghihi, F. Azari, H. Li, M. R. Bateni, J. A. Szpunar, H. Vali, M. Tabrizian, “The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses,” Biomaterials, Vol. 27, 2006, pp. 3532-3539.
[3] A. G. Fincham, J. Moradian-Oldack, J. P. Simmer, “The structural biology of the developing dental enamel matrix,” J Struct Biol, Vol. 126, 1999, pp. 270-299.
[4] J. Moradian-Oldak, “Amelogenins: assembly, processing and control of crystal morphology,” Matrix boil, Vol. 20, 2001, pp. 293-305.
[5] L. Richert, F. Variola, F. Rosei, J. Wuest, A. Nanci, “Adsorption of proteins on nanoporous Ti surfaces,” Surface Science, Vol. 604, 2010, pp. 1445-1451.
[6] H. Zhou, T. Wu, X. Dong, Q. Wang, J. Shen, “Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces,” Biochem Biophys Res Commun, Vol. 361, 2007, pp. 91-96.
[7] R. Goobes, G. Goobes, C. T. Campbell, P. S. Stayton, “Thermodynamics of statherin adsorption onto hydroxyapatite,” Biochemistry, Vol. 45, 2006, pp. 5576- 5586.
[8] J. Hemmerlé, F. J. G. Cuisinier, P. Schultz, J.-C. Voegel, “HRTEM study of biological crystal growth mechanisms in the vicinity of implanted synthetic hydroxyapatite crystals,” J Dent Res, Vol. 76, 1997, pp. 682-687.
[9] J. Hemmerlé, A. ?n?ag, S. Ertürk, “Ultrastructural features of the bone response to a plasma-sprayed hydroxyapatite coating in sheep,” J Biomed Mater Res, Vol. 36, No. 3, 1997, pp. 418-425.
[10] K. Kandori, N. Horigami, H. Kobayashi, A. Yasukawa, T. Ishikawa, “Adsorption of lysozyme onto various synthetic hydroxyapatites,” J Colloid Interf Sci, Vol. 191, 1997, pp. 498-502.
[11] Q. Q. Hoang, F. Sicheri, A.J. Howard, D.S. Yang, “Bone recognition mechanism of porcine osteocalcin from crystal structure,” Nature, Vol. 425, 2003, pp. 977-980.
[12] C.M. Yip, “Atomic force microscopy of macromolecular interactions,” Curr Opin Struct Biol, Vol. 11, 2001, pp. 567-572.
[13] S. M. Slack, T. A. Horbett, “Changes in the strength of fibrinogen attachment to solid surfaces: an explanation of the influence of surface chemistry on the Vroman effect,” J Colloid and Interface Science, Vol. 133, 1989, pp. 148-65.
[14] J. Hemmerlé, S. M. Altmann, M. Maaloum, J. K. H. H?rber, L. Heinrich, J.-C. Voegel, P. Schaaf, “Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy,” Proc Natl Acad Sci USA, Vol. 96, 1999, pp. 6705-6710.
[15] A. Boukari, G. Francius, J. Hemmerlé, “AFM force spectroscopy of the fibrinogen adsorption process onto dental implants,” J Biomed Mater Res A, Vol. 78,: 2006, pp. 466-472.
[16] T. Thundat, R. J. Warmack, G. Y. Chen, D. P. Allison, “Thermal and ambient-induced deflections of scanning force microscope cantilevers,” Applied Physics Letters, Vol. 64, 1994, pp. 2894-2896.
[17] J. Svensson. C. Andersson., J. E. Reseland, P. Lyngstadaas, L. Bülow, “Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli,” Protein Expr Purif, Vol. 48, 2006, pp. 134-141.
[18] G. J?nchen, M. Mertig, W. Pompe, “Adhesion energy of thin collagen coatings and titanium,” Surf and Interface Anal, Vol. 27, 1999, pp. 444-449.
[19] C. Gergely, J.-C. Voegel, P. Schaaf, B. Senger, M. Maaloum, J. K. H. H?rber, J. Hemmerlé, “Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy,” Proc Natl Acad Sci USA , Vol. 97, No. 20, 2000, pp. 10802-10807.
[20] J. Hemmerlé, C. Picart, C. Gergely, P. Schaaf, J.-F. Stoltz, J.-C. Voegel, B. Senger, “Modeling of the detachment of a molecule from a surface: Illustration of the “Bell-Evans effect”, Biorheology, Vol. 40, 2003, pp. 149-160.
[21] A. G. Fincham, J. Moradian-Oldack, T. G. Diekwish, D. M. Layaruu, J. T. Wright, P. Bringas, “Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix,” J Struct Biol, Vol. 115, 1995, pp. 50-59.
[22] J. Moradian-Oldak, N. Bouropoulos, L. Wang, N. Gharakhanian, “Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal,” Matrix biol, Vol. 21, 2002, pp. 197-205.
[23] C. Du, G. Falini, S. Fermani, C. Abbott, J. Moradian-Oldak, “Supramolecular assembly of amelogenin nanospheres into birefringent microribbons,” Science, Vol. 307, 2005, pp. 1450-1454.
[24] X. He, W. Li, S. Habelitz, “The cooperative self-assembly of 25 and 23 kDa amelogenins,” J Struct Biol, Vol. 164, 2008, pp. 314-321.
[25] F. B. Wiedemann-Bidlack, E. Beniash, Y. Yamakoshi, J. P. Simmer, H. C. Margolis, “pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro,” J Struct Biol, Vol. 160:, 2007, pp. 57-69.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.