Share This Article:

Efficient Combination of Topology and Parameter Optimization

Abstract Full-Text HTML XML Download Download as PDF (Size:2954KB) PP. 19-25
DOI: 10.4236/ojop.2014.33003    3,007 Downloads   3,596 Views  

ABSTRACT

This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimization methods. It inherits the ability in finding global optimum from PSO and also suits for discretized design domain. Some special schemes are used in order to provide higher computation efficiency. This method has only been tested with a convex optimization problem. The application in case of a concave problem will be a future study.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Lin, Y. , Sun, Z. , Dadalau, A. and Verl, A. (2014) Efficient Combination of Topology and Parameter Optimization. Open Journal of Optimization, 3, 19-25. doi: 10.4236/ojop.2014.33003.

References

[1] Xie, Y.-M. and Steven, G.-P. (1993) A Simple Evolutionary Procedure for Structural Optimization. Computers & Structures, 49, 885-896.
http://dx.doi.org/10.1016/0045-7949(93)90035-C
[2] Chu, D.-N., Xie, Y.-M., Hira, A. and Steven, G.-P. (1996) Evolutionary Structural Optimization for Problems with Stiffness Constraints. Finite Elements in Analysis and Design, 21, 239-202.
http://dx.doi.org/10.1016/0168-874X(95)00043-S
[3] Querin, O.-M., Steven, G.-P. and Xie, Y.-M. (1998) Evolutionary Structural Optimization (ESO) Using a Bidirectional Algorithm. Engineering Computations, 15, 1031-1048.
http://dx.doi.org/10.1108/02644409810244129
[4] Bendsoe, M.-P. (1989) Optimal Shape Design as a Material Distribution Problem. Structural Optimization, 1, 192-202.
http://dx.doi.org/10.1007/BF01650949
[5] Dadalau, A., Hafla, A. and Verl, A. (2009) A New Adaptive Penalization Scheme for Topology Optimization. Production Engineering. Research and Development, 3, 427-434.
http://dx.doi.org/10.1007/s11740-009-0187-8
[6] Bendsoe, M.-P. and Sigmund, O. (2004) Topology Optimization: Theory, Methods and Applications. Springer Press, Berlin.
http://dx.doi.org/10.1007/978-3-662-05086-6
[7] Kennedy, J. and Eberhart, R.-C. (1995) Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942-1948.
http://dx.doi.org/10.1109/ICNN.1995.488968
[8] Shi, Y.-H. and Eberhart, R.-C. (1998) A Modified Particle Swarm Optimizer. Proceedings of the IEEE World Congress on Computational Intelligence, 69-73.
[9] van den Bergh, F. and Engelbrecht, A.-P. (2002) A New Locally Convergent Particle Swarm Optimiser. Proceedings of the IEEE International Conference on System Man and Cybernetics, 3.
http://dx.doi.org/10.1109/ICSMC.2002.1176018
[10] Trelea, I.-C. (2003) The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 85, 317-325.
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
[11] Ferreria, A.-J.-M. (2008) Matlab Codes for Finite Element Analysis. Soild Mechanics and Its Applications Vol. 157, Springer Press, Berlin.
http://dx.doi.org/10.1007/s00158-010-0594-7
[12] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.-S. and Sigmund, O. (2011) Efficient Topology Optimization in Matlab Using 88 Lines of Code. Structural and Multidiscriplinary Optimization, 43, 1-16.
[13] Davis, T. (2000) Creating Sparse Fimite-Element Matrices in Matlab.
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.