Share This Article:

Effluent of a Polyculture System (Tilapias and Shrimps): Assessment by Mass Balance of Nitrogen and Phosphorus

Abstract Full-Text HTML XML Download Download as PDF (Size:905KB) PP. 797-802
DOI: 10.4236/jep.2014.510081    2,742 Downloads   3,360 Views   Citations

ABSTRACT

From the estimation of the mass balance model, which can also be classified as “black box” model, it is possible to infer the impact of management on the system considered. This study aimed to evaluate water pollution generated by wastewater from a polyculture system of tilapia and shrimp and discuss the management employee and their relation to the quality of the effluent released. It used a pond measuring 1500 m2, average depth 1.6 meters, where 12 cages of 1 m3 populated with tilapia juveniles were installed 33 days after the shrimps’ population. The tilapia juveniles were distributed in densities from 200 to 400 fish per cubic meter, reaching the density of 2.4 fish per square meter within the total pond area. Shrimp post-larvae were released outside the cages within the pond area in a density of 3.3 organisms per square meter. Total density considering fish and shrimps was of 5.7 organisms per square meter in the pond area. Water samples were taken weekly in affluent and effluent of the pond (January-August/2009). The mass balance model was calculated from the difference between the estimated load for the output and input of the pond. The average flow rate was 4.46 L/s. The average loads nitrogen was 0.072 Kg/day (affluent) and 0.179 Kg/day (effluent) and phosphorus 0.0136 Kg/day (affluent) and 0.031 Kg/day (effluent). The mass balance resulted in mean values of 0.11 ± 0.06 Kg/day for total nitrogen and 0.017 ± 0.010 Kg/day for total phosphorus indicating that the system exported nutrients. The use of Best Management Practices (BMP) likes better feed and water management as a way to minimize nutrient export.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Araújo-Silva, S. , Moraes, M. , Carmo, C. , Osti, J. , Vaz-dos-Santos, A. and Mercante, C. (2014) Effluent of a Polyculture System (Tilapias and Shrimps): Assessment by Mass Balance of Nitrogen and Phosphorus. Journal of Environmental Protection, 5, 797-802. doi: 10.4236/jep.2014.510081.

References

[1] Scorvo-Filho, J.D. (2007) Panorama da Aquicultura Nacional.
ftp://ftp.sp.gov.br/ftppesca/panorama_aquicultura.pdf
[2] Valenti, W.C. (2000) Aquaculture for Sustainable Development. In: Valenti, W.C., Poli, C.R., Pereira, J.A. and Borghetti, J.R., Eds., Aquicultura do Brasil: Bases para um Desenvolvimento Sustentavel, CNPq/MCT, Brasilia, 17-32.
[3] Henry-Silva, G.G. and Camargo, A.F.M. (2008) Tratamento de Efluentes de Carcinicultura por Macrofitas Aquaticas Flutuantes. Revista Brasileira de Zootecnia, 37, 181-188.
http://dx.doi.org/10.1590/S1516-35982008000200002
[4] Avnimelech, Y. and Ritvo, G. (2003) Shrimp and Fish Pond Soils: Processes and Management. Aquaculture, 220, 549-567.
http://dx.doi.org/10.1016/S0044-8486(02)00641-5
[5] Boyd, C.E. (2004) Feeding Affects Pond Water Quality. Global Aquaculture Advocate, 29-30.
[6] Brasil. (2005) Resolucao CONAMA no. 357, de marco de 2005. Diario Oficial da Republica Federativa do Brasil, Brasilia, 23.
[7] Salah, A.M., Fields, P.J. and Miller, A.W. (2005) Simulating Uncertainty in Mass Balance Modeling for Freshwater Reservoirs, Case Study: Deer Creek Reservoir, Utah, USA. Proceedings of the 37th Winter Simulation Conference of the Association for Computing Machine, Orlando, 4-7 December 2005, 2385-2394.
[8] Valderrama, J.C. (1981) The Simultaneous Analysis of Total Nitrogen and Total Phosphorus in Natural Waters. Marine Chemistry, 10, 109-122.
http://dx.doi.org/10.1016/0304-4203(81)90027-X
[9] Nusch, E.A. (1980) Comparison of Different Methods for Chlorophyll and Phaeopigment Determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie, 14, 14-36.
[10] Pereira, J.S. (2008) Avaliacao do Impacto do Efluente de Piscicultura sobre o Corpo Hidrico Receptor. Master Dissertation, Fisheries Institute, Sao Paulo.
[11] Mercante, C.T.J., Vaz-dos-Santos, A.M., Moraes, M.A.B., Pereira, J.S. and Lombardi, J.V. (2014) Bullfrog (Lithobates catesbeianus) Farming System: Water Quality and Environmental Changes. Acta Limnologica Brasiliensia. (in Press)
[12] Verdegem, M.C.J. (2013) Nutrient Discharge from Aquaculture Operations in Function of System Design and Production Environment. Reviews in Aquaculture, 5, 158-171.
http://dx.doi.org/10.1111/raq.12011
[13] Mainardes-Pinto, C.S.R. and Mercante, C.T.J. (2003) Avaliacao de Variaveis Limnologicas e suas Relacoes com uma Floracao de Euglenaceae Pigmentada em Viveiro Povoado com Tilapia do Nilo (Oreochromis niloticus Linnaeus), Sao Paulo, Brasil. Acta Scientiarum Biological Sciences, 25, 323-328.
[14] Boyd, C.E. and Queiroz, J.F. (2001) Nitrogen, Phosphorus Loads Vary by System: USEPA Should Consider System Variables in Setting New Effluent Rules. The Advocate, 4, 84-86.
[15] Boyd, C.E., Tucker, C., McNevin, A., Bostick, K. and Clay, J. (2007) Indicators of Resource Use Efficiency and Environmental Performance in Fish and Crustacean Aquaculture. Reviews in Fisheries Science, 15, 327-360.
http://dx.doi.org/10.1080/10641260701624177
[16] Pereira, J.S., Mercante, C.T.J., Lombardi, J.V., Vaz-dos-Santos, A.M., Carmo, C.F. and Osti, J.A.S. (2012) Eutrophization Process in a System Used for Rearing the Nile Tilapia (Oreochromis niloticus), Sao Paulo State, Brazil. Acta Limnologica Brasiliensia, 24, 387-396.
http://dx.doi.org/10.1590/S2179-975X2013005000006
[17] Amirkolaie, A.K. (2011) Reduction in the Environmental Impact of Waste Discharge by Fish Farms through Feed and Feeding. Reviews in Aquaculture, 3, 19-26.
http://dx.doi.org/10.1111/j.1753-5131.2010.01040.x
[18] Sipauba-Tavares, L.H., Moraes, M.A.G. and Braga, F.M.S. (1999) Dynamics of Some Limnological Characteristics in Pacu (Piaractus mesopotamicus) Culture Tanks as Function of Handling. Revista Brasileira de Biologia, 59, 543-551.
http://dx.doi.org/10.1590/S0034-71081999000400003
[19] Sipauba-Tavares, L.H., Gomes, J.P.F.S. and Braga, F.M.S. (2003) Effect of Liming Management on the Water Quality in Colossoma macropomum (“Tambaqui”) Ponds. Acta Limnologica Brasiliensia, 15, 95-103.
[20] Mires, D. (1995) Aquaculture and the Aquatic Environment: Mutual Impact and Preventive Management. The Israeli Journal of Aquaculture, 47, 163-172.
[21] Figueiredo, M.C.B., Araujo, L.F.P., Rosa, M.F., Morais, L.F.S., Paulino, W.D. and Gomes, R.B. (2006) Impactos Ambientais da Carcinicultura de Aguas Interiores. Engenharia Sanitaria e Ambiental, 11, 231-240.
http://dx.doi.org/10.1590/S1413-41522006000300006
[22] Boyd, C.E. and Hulcher, R. (2002) Best Managements Practices Established for Channel Catfish Farming in Alabama. AAES Highlights, 1, 1-4.
[23] Valenti, W.C. (2008) A Aquicultura e Sustentavel? Anais do IV Seminario Internacional de Aquicultura, Maricultura e Pesca, Florianopolis, 13-15 May 2008, 1-11.
[24] Marques, H.L.A., Mainardes-Pinto, C.S.R., Paiva, P., Verani, J.R., Mallasen, M., Barros, H.P., Boock, M.V. and Maracantonio, A.S. (2010) Criacao de Tilapia do Nilo em Diferentes Densidades de Estocagem, em Tanques Rede Instalados em Viveiro Povoado com Camarao de Agua Doce Macrobrachium rosenbergii. Anais do IV Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquatica, Recife, 12-15 September 2010.
[25] Santos, M.J.M. and Valenti, W.C. (2002) Production of Nile Tilapia Oreochromis niloticus and Freshwater Prawn Macrobrachium rosenbergii Stocked at Different Densities in Polyculture Systems in Brazil. Journal of World Aquaculture Society, 33, 369-376.
http://dx.doi.org/10.1111/j.1749-7345.2002.tb00513.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.