Share This Article:

Study of the Temperature Distribution in a Road Tunnel Under the Effect of Two Ventilation Systems

Abstract Full-Text HTML Download Download as PDF (Size:3591KB) PP. 231-242
DOI: 10.4236/jep.2011.23027    6,737 Downloads   13,207 Views   Citations

ABSTRACT

This paper proposes numerical investigations carried out on a small scale tunnel model airing to study the fire-induced smoke control by longitudinal and longitudinal-natural ventilation systems. We studied the effect of two ventilation systems on the temperature distribution and stratification of the pollutant to estimate the efficiency of ventilation systems. The flow is characterized by the temperature fields, temperature profiles and the Froude number. The numerical tool used is FDS (version 4.0). This numerical study requires validation with an experience of literature. Good agreement with experimental results confirms the possibility of using this code in the problem.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Brahim, B. Mourad, E. Afif and B. Ali, "Study of the Temperature Distribution in a Road Tunnel Under the Effect of Two Ventilation Systems," Journal of Environmental Protection, Vol. 2 No. 3, 2011, pp. 231-242. doi: 10.4236/jep.2011.23027.

References

[1] S. R. Lee and H. S. Ryou, “A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires for Different Aspect Ratio,” Building and Environment, Vol. 41, No. 6, 2006, pp. 19-725. Udoi:10.1016/j.buildenv.2005.03.010U
[2] L. H. Hu, R. Huo and W. K. Chow, “Studies on Buoyancy-Driven Back-Layering Flow in Tunnel Fires,” Experimental Thermal and Fluid Science, Vol. 32, No. 8, 2008, pp. 1468-1483. Udoi:10.1016/j.expthermflusci.2008.03.005U
[3] L. H. Hu, R. Huo, W. Peng, W. K. Chow and R. X. Yang, “On the Maximum Smoke Temperature under the Ceiling in Tunnel Fires,” Tunnelling and Underground Space Technology, Vol. 21, No. 6, 2006, pp. 650-655. Udoi:10.1016/j.tust.2005.10.003U
[4] L. H. Hu., R. Huo, H. B. Wang and R. X. Yang, “Experimental and Numerical Studies on Longitudinal Smoke Temperature Distribution Upstream and Downstream from the Fire in a Road Tunnel,” Journal of fire sciences, ISSN 0734-9041.
[5] S. M. Jojo and W. K. Chow, “Numerical Studies on Performance Evaluation of Tunnel Ventilation Safety Systems,” Tunnelling and Underground Space TechnoLogy, Vol. 18, No. 5, 2003, pp. 435-52. Udoi:10.1016/S0886-7798(03)00023-3U
[6] J. Modic, “Fire Simulation in Road Tunnels,” Tunnelling and Underground Space Technology, Vol. 18, No. 5, 2003, pp. 525-530. Udoi:10.1016/S0886-7798(03)00069-5U
[7] Milo? Banjac and Barbara Nikoli?, “Numerical Study of Smoke Flow Control in Tunnel Fires Using Ventilation Systems,” FME Transactions, Vol. 36, No. 1, 2008, pp. 145-150.
[8] O. Mégret and O. Vauquelin, “A Model to Evaluate Tunnel Fire Characteristics,” Fire Safety Journal, Vol. 34, No. 4, 2000, pp. 393-401. Udoi:10.1016/S0379-7112(00)00010-2U
[9] Y. Wu and M. Z. A. Bakar, “Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems—A Study of the Critical Velocity,” Fire Safety Journal, Vol. 35, No. 4, 2000, pp. 363-90. Udoi:10.1016/S0379-7112(00)00031-XU
[10] L. H. Hu, R. Huo, H. B. Wang, Y. Z. Li and R. X. Yang, “Experimental Studies on Fire-Induced Buoyant Smoke Temperature Distribution along Tunnel Ceiling,” Building and Environment, Vol. 42, No. 11, 2007, pp. 3905-3915. Udoi:10.1016/j.buildenv.2006.10.052U
[11] O. Vauquelin, “Experimental Simulations of Fire-Induced Smoke Control in Tunnels Using an ‘Air–Helium Reduced Scale Model’: Principle, limitations, Results and Future,” Tunneling and Underground Space Technology, Vol. 23, 2008, pp. 171-178. Udoi:10.1016/j.tust.2007.04.003U
[12] O. Vauquelin, “Parametrical Study of the Back Flow Occurrence in Case of a Buoyant Release into a Rectangular Channel,” Experimental Thermal and Fluid Science, Vol. 29, 2005, pp. 725-731. Udoi:10.1016/j.expthermflusci.2005.01.002U
[13] C. C. Hwang and J. C. Edwards, “The Critical Ventilation Velocity in Tunnel Fires—A Computer Simulation,” Fire Safety Journal, Vol. 40, No. 3, 2005, pp. 213-244. Udoi:10.1016/j.firesaf.2004.11.001U
[14] J. S. Newma, “Experimental Evaluation of Fire-Induced Stratification,” Combust Flame, Vol. 57, No. 33, 1984, pp. 33-39. Udoi:10.1016/0010-2180(84)90135-4U
[15] H. Kurioka, Y. Oka, H. Satoh and O. Sugawa, “Fire Properties in Near Field of Square Fire Source with Longitudinal Ventilation in Tunnels,” Fire Safety Journal, Vol. 38, No. 4, 2003, pp. 319-340. Udoi:10.1016/S0379-7112(02)00089-9U
[16] J. P. Kunsch, “Simple Model for Control of Fire Gases in a Ventilated Tunnel,” Fire Safety Journal, Vol. 37, No. 1, 2002, pp. 67-81. Udoi:10.1016/S0379-7112(01)00020-0U
[17] Y. Oka and G. T. Atkinson, “Control of Smoke Flow in Tunnel Fire,” Fire Safety Journal, Vol. 25, No. 4, 1995, pp. 305-322. Udoi:10.1016/0379-7112(96)00007-0U
[18] F. Chen, “Smoke Propagation in Road Tunnels,” Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 107, ROC, Applied Mechanics Reviews, Vol. 53, No. 8, 2000, p. 207. Udoi:10.1115/1.3097350U
[19] G. B. Grant, S. F. Jagger, and C. J. Lea, “Fires in Tunnels,” Philosophical Transactions of the Royal Society—Theme Issue on Fire Dynamics, Vol. 356, No. 1748, 1998, pp. 2873-2906.
[20] G. B. Grant and D. Drysdale, “Estimating Heat Release Rates from Large–Scale Tunnel Fires,” In: Proceedings of the fifth international symposium on fire safety science, 1995, pp. 1213-1224.
[21] S. F. Luchian and A. G. Bendelius, “West Virgina Memorial Tunnel Fire,” Test Program, Proc. of the International Conference on Fires in Tunnels, October 1994.
[22] M. A. Delichatsios, “The Flow of Fire Gases under a Beamed Ceiling,” Combustion and Flame, Vol. 43, No. 1, 1981, pp. 1-10. Udoi:10.1016/0010-2180(81)90002-XU
[23] J. P. Kunsch, “Critical Velocity and Range of a Fire-Gas Plume in a Ventilated Tunnel,” Atmospheric Environment, Vol. 33, No. 1, 1999, pp. 13-24. Udoi:10.1016/S1352-2310(98)00118-6U
[24] K. McGrattan, “Fire Dynamics Simulator (Version 4) Technical Reference Guide,” NIST Special Publication 1018, March 2006.
[25] K. McGrattan and G. Forney, “Fire Dynamics Simulator (Version 4) User’s Guide”. NIST Special Publication 1019, March 2006.
[26] Y. F. Li and W. K. Chow, “Computational Fluid Dynamics Simulation of Fire-Induced Air Flow in a Large Space Building: Key Points to Note,” In: Proceedings of the ASME Heat transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004, pp. 1163-1169.
[27] W. Zhang, A. Hamer, M. Klassen, D. Carpenter and R. Roby, “Turbulence Statistics in a Fire Room Model by Large Eddy Simulation,” Fire Safety Journal, Vol. 37, No. 8, 2002, pp. 721-752. Udoi:10.1016/S0379-7112(02)00030-9U
[28] J. Smagorinsky, “General Circulation Experiments with Primitive Equations-I, the Basic Experiment,” Monthly Weather Review, Vol. 91, No. 3, 1963, pp. 99-105. Udoi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2U
[29] P. H. Thomas, “The Movement of Smoke in Horizontal Passages Against an Air Flow,” Fire Research Note No. 723, Fire Research Station, Watford, UK, 1968.
[30] N. H. Danziger and W.D. Kennedy, “Longitudinal Ventilation Analysis for the Glenwood Canyon Tunnels,” In: Proceedings of the Fourth International Symposium Aerodynamics and Ventilation of Vehicle Tunnels, York, England, March 1982, pp. 169-186.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.