Share This Article:

Thermal Properties of Se100–xZnx Glassy System

Abstract Full-Text HTML Download Download as PDF (Size:1471KB) PP. 289-298
DOI: 10.4236/msa.2011.25038    4,924 Downloads   9,058 Views   Citations


The crystallization process in Se100–xZnx glassy system is investigated using differential scanning calorimeters (DSC). The samples are prepared by conventional melt-quenching technique in the composition range 2 ≤ x ≤ 20 (at%). Non-isothermal measurements are carried out for different heating rates .The value of the glass transition temperature Tg the crystallization temperature Tc and the crystallization peak temperature Tp, are found to be depending upon both heating rate as well as the composition from thermal analytical data. The investigation of crystallization kinetics indicates a single stage crystallization process. The glass transition energy Eg and the crystallization activation energy Ec are also evaluated from thermal analytical data. The analyzer has been used the most reliable non-isothermal kinetic methods. The value of kinetics parameters Eg, Ec and ‘n’ are calculated using non-isothermal kinetics methods. The analysis shows that the incorporation of Zinc content has a strong influence on the crystallization mechanism for the Se100–xZnx glassy system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Nasir, M. Khan, M. Husain and M. Zulfequar, "Thermal Properties of Se100–xZnx Glassy System," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 289-298. doi: 10.4236/msa.2011.25038.


[1] M. J. Starink, “Analysis of Aluminum Based Alloys by Calorimetric: Quantitative Analysis of Reactions and Reaction Kinetics,” International Materials Reviews, Vol. 49, No. 3-4, 2004, pp. 191-226. doi:10.1179/095066004225010532
[2] T. Ozawa, “Temperature Control Modes in Thermal Analysis,” Pure and Applied Chemistry, Vol. 72, No. 11, 2000, pp. 2083-2099. doi:10.1351/pac200072112083
[3] N. Mehta, M. Zulfequar and A. Kumar, “Kinetic Parameters of Crystallization in Glassy Se100–xZnx,” Physica Status Solidi (A), Vol. 203, No. 2, 2005, pp. 236-246.
[4] E. Maruyama, “Amorphous Built-in-Field Effect Photoreceptors,” Japanese Journal of Applied Physics, Vol. 21, No. 2, 1982, pp. 213-223. doi:10.1143/JJAP.21.213
[5] D. C. Hunt, S. S. Kirby and J. A. Rowland, “X-Ray Imaging with Amorphous Selenium: X-Ray to Charge Conversion Gain and Avalanche Multiplication Gain,” Medical Physics, Vol. 29, No. 11, 2002, p. 2464. doi:10.1118/1.1513157
[6] T. Ozawa, “Non-Stoichiometry of YBa2Cu3O7-d Observed by Repeated Temperature Scanning,” Journal of Thermal Analysis and Calorimetry, Vol. 72, No. 1, 2003, pp. 337-345. doi:10.1023/A:1023960928871
[7] H. S. Chen, “A Method for Evaluating Viscosities of Metallic Glasses from the Rates of Thermal Transformations,” Journal of Non-Crystalline Solids, Vol. 27, No. 2, 1978, pp. 257-263. doi:10.1016/0022-3093(78)90128-X
[8] N. Mehta, P. Agarwal and A. Kumar, “Calorimetric Studies on Se0.6Ge0.22M0.10 (M = Cd, In, Pb),” Turkish Journal of Physics, 29, 2005, pp. 193-200.
[9] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, 1957, pp. 1702-1706. doi:10.1021/ac60131a045
[10] S. O. Kasap, In: A. S. Diamond, Ed., Handbook of Imaging Materials, Marcel Dekker, New York, 1991, p. 355.
[11] M. A. El-Oyoum, “Determination of the Crystallization Kinetic Parameters of Ge22.5Te77.5 Glass Using Model-Free and Model Fitting Methods,” Journal of Alloys and Compounds, Vol. 486, No. 1-2, 2009, pp. 1-8. doi:10.1016/j.jallcom.2009.06.137
[12] T. Akahira and T. T. Sunuse, “Joint Convention of Four Electrical Institutes,” Research Report, Chiba Institute of Technology, Chiba, Vol. 16, 1971. pp. 22-31.
[13] T. Ozawa, “Estimation of Activation Energy by Isoconversion Methods,” Thermochimica Acta, Vol. 203, 1992, pp. 159-165. doi:10.1016/0040-6031(92)85192-X
[14] T. Ozawa, “A New Method of Analyzing Thermo Gravimetric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, 1965, pp. 1881-1886. doi:10.1246/bcsj.38.1881
[15] J. H. Flynn and L. A. Wall, “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data,” Journal of Polymer Science Part B: Polymer Letters, Vol. 4, No. 5, 1966, pp. 323-328. doi:10.1002/pol.1966.110040504
[16] H. L. Friedman, “Kinetics of Thermal Degradation of Charforming Plastics from Hermogravimetry. Application to a Phenolic Plastic,” Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, No. 1, 1964, pp. 183-185.
[17] D. Tonchev and S. O. Kasap, “Ther-mal Properties of SbxSe100?x Glasses Studied by Modulated Temperature Differential Scanning Calorimetric,” Journal of Non- Crystalline Solids, Vol. 248, No. 1, 1999, pp. 28-36. doi:10.1016/S0022-3093(99)00100-3
[18] S. O. Kasap and C. Juhasz, “Theory of Thermal Analysis of Non-Isothermal Crystallization Kinetics of Amorphous Solids,” Journal of the Chemical Society, Faraday Transactions, Vol. 81, 1985, pp. 811-831. doi:10.1039/f29858100811
[19] J. Vázquez, C. Wagner, P. Villares and R. Jiménez-Garay, “Glass Transition and Crystallization Kinetics in Sb0.18As0.34Se0.48 Glassy Alloy by Using Non-Isothermal Techniques,” Journal of Non-Crystalline Solids, Vol. 235-237, 1998, pp. 548-553. doi:10.1016/S0022-3093(98)00661-9
[20] K. Matusita, T. Konastsu and R. Yokota, “Kinetics of Non-Isothermal Crystallization Process and Activation Energy for Crystal Growth in Amorphous Materials,” Journal of Materials Science, Vol. 19, No. 1, 1984, pp. 291-296. doi:10.1007/BF02403137
[21] T. Ozawa, “Kinetics of Non-Isothermal Crystallization,” Polymer, Vol. 12, No. 3, 1971, pp. 150-158. doi:10.1016/0032-3861(71)90041-3
[22] Y. Q. Gao and W. Wang, “On the Activation Energy of Crystallization in Metallic Glasses,” Journal of Non- Crystalline Solids, Vol. 81, No. 1-2, 1986, pp. 129-134. doi:10.1016/0022-3093(86)90262-0
[23] K. Singh, N. S. Saxenaa, O. N. Srivastava, D. Patidara and T. P. Sharmaa, “Energy Band Gap of Se100–xInx Chalcogenide Glasses,” Chalcogenide Letters, Vol. 3, No. 3, 2006, pp. 33-36.
[24] A. Hurby, “Evaluation of Glass-Forming Tendency by Means of DTA,” Czechoslovak Journal of Physics, Vol. 22, No. 11, 1972, pp. 1187-1193.
[25] S. A. Khan, F. S. Al-Hazmi, A. S. Maida and A. A. Al-Ghamdi, “Calorimetric studies of the crystallization process in a-Se75S25-xAgx,” Current Applied Physics, Vol. 9, No. 3, 2009, pp. 567-572. doi:10.1016/j.cap.2008.05.004
[26] N. Mehta and A. Kumar, “Thermal Characterization of Glassy Se70Te20M10 Using DSC Technique,” Journal of Materials Science, Vol. 39, No. 21, 2004, pp. 6433-6437. doi:10.1023/

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.