Share This Article:

Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation

Abstract Full-Text HTML XML Download Download as PDF (Size:1451KB) PP. 16-27
DOI: 10.4236/msce.2014.27002    3,111 Downloads   4,875 Views   Citations


Geopolymer adsorbents were prepared from silica and metakaolin in different Al and Si components and applied for removal of metal ions, Cs+ and Pb2+, from other heavy metal ions mixture. The geopolymer was optimized at Si/Al = 2 as adsorbent, targeting to Cs+ and Pb2+ separation. The binding behavior was well fitted to Langmuir model, which proved that the metakaolin-based geopolymer had multibinding to adsorb ions. The effective adsorption was also observed independent of NaCl concentration for the Cs+ and Pb2+. This meant that the ion adsorption of geopolymers occurred under non-electrostatic mechanism.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

López, F. , Sugita, S. , Tagaya, M. and Kobayashi, T. (2014) Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation. Journal of Materials Science and Chemical Engineering, 2, 16-27. doi: 10.4236/msce.2014.27002.


[1] Matis, K.A., Zouboulis, A.I. and Lazaridis, N.K. (1998) Removal and Recovery of Metals from Dilute Solutions: Applications of Flotation Techniques. Mineral Processing and the Environment, 43, 165-196.
[2] Hui, K.S., Chao, C.Y.H. and Kot, S.C. (2004) Removal of Mixed Heavy Metal Ions in Wastewater by Zeolite 4A and Residual Products from Recycled Coal Fly Ash. Journal of Hazardous Materials, 127, 89-101.
[3] Brauckmann, B.M. (1990) Industrial Solutions Amenable to Biosorption. In: Volesky, B., Ed., Biosorption of Heavy Metals, CRC Press, Boca Raton, Vol. 52.
[4] López, F.A., Martín, M.I., Pérez, C., López-Delgado, A. and Alguacil, F.J. (2003) Adsorción de Metales Pesados Sobre Cascarilla de Laminación. Revista Metalurgia, 39, 215-223.
[5] Buchwald, A., Zellmann, H.D. and Kaps, Ch. (2011) Condensation of Aluminosilicate Gels-Model System for Geopolymer Binders. Journal of Non-Crystalline Solids, 357, 1376-1382.
[6] Komnitsas, K. and Zaharaki, D. (2007) Geopolymerisation: A Review and Prospects for the Minerals Industry. Minerals Engineering, 20, 1261-1277.
[7] Xu, H. and Van Deventer, J.S.J. (2002) Microstructural Characterisation of Geopolymers Synthesised from Kaolinite/Stilbite Mixtures Using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM. Cement and Concrete Research, 32, 1705-1716.
[8] Barbosa, V.F.F. and MacKenzie, K.J.D. (2003) Synthesis and Thermal Behaviour of Potassium Sialate Geopolymers. Materials Letters, 57, 1477-1482.
[9] Xu, H. and Van Deventer, J.S.J. (2000) The Geopoly-merisation of Aluminosilicate Minerals. International Journal of Mineral Processing, 59, 247-266.
[10] Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A. and Rossignol, S. (2011) In Situ Inorganic Foams Prepared from Various Clays at Low Temperature. Applied Clay Science, 51, 15-22.
[11] Zhang, Y.J., Li, S., Wang, Y.C. and Xu, D.L. (2012) Microstructural and Strength Evolutions of Geopolymer Composite Reinforced by Resin Exposed to Elevated Temperature. Journal of Non-Crystalline Solids, 358, 620-624.
[12] Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and Van Deventer, J.S.J. (2007) Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933.
[13] Goretta, K.C., Gutierrez-Mora, F., Singh, D., Routbort, J.L., Lukey, G.C. and Van Deventer, J.S.J. (2007) Erosion of Geopolymers Made from Industrial Waste. Journal of Materials Science, 42, 3066-3072.
[14] Kong, D.L.Y., Sanjayan, J.G. and Sagoe-Crentsil, K. (2007) Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash After Exposure to Elevated Temperatures. Cement and Concrete Research, 37, 1583-1589.
[15] Yip, C.K., Lukey, G.C. and Van Deventer, J.S.J. (2004) Effect of Blast Furnace Slag Addition on Microstructure and Properties of Metakaolinite Geopolymeric Materials. Ceramic Transactions, 153, 187-209.
[16] Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H. and Yang, S.F. (2012) The Heavy Metal Adsorption Characteristics on Metakaolin-Based Geopolymer. Applied Clay Science, 56, 90-96.
[17] Li, L., Wang, S.B. and Zhu, Z.H. (2006) Geopolymeric Adsorbents from Fly Ash for Dye Removal from Aqueous Solution. Journal of Colloid and Interface Science, 300, 52-59.
[18] Wang, S.B. and Peng, Y.L. (2010) Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chemical Engineering Journal, 156, 11-24.
[19] Zhang, J.G., Provis, J.L., Feng, D.W. and Van Deventer, J.S.J. (2008) Geopolymers for Immobilization of Cr6+, Cd2+, and Pb2+. Journal of Hazardous Materials, 157, 587-598.
[20] Ahmaruzzaman, M. (2010) A Review on the Utilization of Fly Ash. Progress in Energy and Combustion Science, 36, 327-363.
[21] Lopez, F.J., Sugita, S. and Kobayahi, T. (2014) Cesium-Adsorbent Geopolymer Foams Based on Silica from Rice Husk and Metakaolin. Chemistry Letters, 43, 128-130.
[22] Palomo, A., Blanco Varela, M.T., Granizo, M.L., Puertas, F., Vázquez, T. and Grutzeck, M.W. (1999) Chemical Stability of Cementitious Materials Based on Metakaolin. Cement and Concrete Research, 29, 997-1004.
[23] Granizo, M.L., Blanco-Varela, M.T. and Palomo, A. (2000) Influence of the Starting Kaolin on Alkali-Activated Materials Based on Metacaolin. Study of the Reaction Parameters by Isothermal Conduction Calorimetry. Journal of Materials Science, 35, 6309-6315.
[24] Moenke, H.H.W. (1994) Silica, the Three-Dimensional Silicates, Borosilicates and Beryllium Silicates. In: Farmer, V.C., Ed., The Infrared Spectra of Minerals, Mineralogical Society Monograph 4, Adlard & Son, Dorking, Surrey, 365.
[25] Parker, R.W. and Frost, R.L. (1996) The Application of Drift Spectroscopy to the Multicomponent Analysis of Organic Chemicals Adsorbed on Montmorillonite. Clays and Clay Minerals, 44, 32-40.
[26] Frost, R.L., Frederick, P.M. and Shurvell, H.F. (1996) Raman Microscopy of Some Kaolinite Clay Minerals. Canadian Journal of Applied Spectroscopy, 41, 10.
[27] Ríos, C.A., Williams, C.D. and Fullen, M.A. (2009) Nucleation and Growth History of Zeolite LTA Synthesized from Kaolinite by Two Different Methods. Applied Clay Science, 42, 446-454.
[28] Giannopoulou, I. and Panias, D. (2010) Hydrolytic Stability of Sodium Silicate Gels in the Presence of Aluminum. Journal of Materials Science, 45, 5370-5377.
[29] Gadsen, J.A. (1995) Infra-Red Spectra of Minerals and Related Inorganic Compounds. Butterworth, London.
[30] Farmer, V.C. (1994) The Infrared Spectra of Minerals. Mineralogical Society, London.
[31] Palomo, A. and Glasser, F.P. (1992) Chemically-Bonded Cementitiousn Material Based on Metakaolin. British Ceramic Transactions, 91, 107-112.
[32] Madani, A. (1990) 29Si and 27Al NMR Study of Zeolite Formation from Alkali-Leached Kaolinites. Influence of Thermal Preactivation. Journal of Physical Chemistry, 94, 760-765.
[33] Ortego, J.D. and Barroeta, Y. (1991) Leaching Effects on Silicate Polymerisation. An FTIR and 29Si NMR Study of Lead and Zinc in Portland Cement. Environmental Science & Technology, 25, 1171-1174.
[34] Granizo, M.L., Alonso, S., Blanco-Varela, M.T. and Palomo, A. (2010) Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction. Journal of the American Ceramic Society, 45, 607.
[35] Zhang, Y.S., Sun, W. and Li, Z.J. (2008) Infrared Spectroscopy Study of Structural Nature of Geopolymeric Products. Journal of Wuhan University of Technology, 23, 522-527.
[36] Aveyerd, R. (1984) Adsorption at A/L, L/L and S/L Interfaces in Surfactants. In: Tadros, T.F., Ed., Academic Press, London, 166-173.
[37] Aranberri, I. and Bismarck, A. (2007) Caracterización Superficial de Minrales Arcillosos Presentes en los Depósitos de Crudo. Anales de Quimica, 103, 23-27.
[38] Sreejalekshmi, K.G., Krishnan, K.A. and Anirudhan, T.S. (2009) Adsorption of Pb(II) and Pb(II)-Citric Acid on Sawdust Activated Carbon: Kinetic and Equilibrium Isotherm Studies. Journal of Hazardous Materials, 161, 1506-1513.
[39] Sen Gupta, S.K. and Bhattacharyya, K.G. (2008) Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Montmorillonite Surfaces from Aqueous Medium. Journal of Environmental Management, 87, 46-58.
[40] Purkait, M.K., Gusain, D.S., Das Gupta, S. and De, S. (2005) Adsorption Behavior of Chrysoidine Dye on Activated Charcoal and Its Regeneration Characteristics Using Different Surfactants. Separation Science and Technology, 39, 2419-2440.
[41] Gezici, O., Kara, H., Ayar, A. and Topkafa, M. (2007) Sorption Behavior of Cu(II) Ions on Insolubilized Humic Acid Under Acidic Conditions: An Application of Scatchard Plot Analysis in Evaluating the pH Dependence of Specific and Nonspecific Bindings. Separation and Purification Technology, 55, 132-139.
[42] Scatchard, G. (1949) The Attraction of Proteins for Small Molecules and Ions. Annals of the New York Academy of Sciences, 51, 660-672.
[43] Bhattacharya, A.K. and Venkobachar, C. (1984) Removal of Cadmium (II) by Low Cost Adsorbents. Journal of Environmental Engineering, 110, 110-122.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.