Share This Article:

Rainfall Distribution Functions for Irrigation Scheduling: Calculation Procedures Following Site of Olive (Olea europaea L.) Cultivation and Growing Periods

Abstract Full-Text HTML Download Download as PDF (Size:1849KB) PP. 2094-2133
DOI: 10.4236/ajps.2014.513224    2,973 Downloads   4,104 Views   Citations

ABSTRACT

In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently. Irrigation was applied since the 70th in the intensive olive orchards to improve and stabilize olive production. This study aimed to determine the crop water needs of olive orchards and the rainfall frequencies at which they are covered following age and site of olive production. For this purpose, the rainfall distribution functions were established for different cities of Tunisia (Tunis, Bizerte, Béja, Nabeul, Sidi Bouzid, Gabes and Sousse). For all sites and growing periods, the reference evapotranspiration (ET0) was computed by using several methods. Their performance against the PM-ET0 (Penman-Monteith) estimates was evaluated graphically and statistically for a better adaptation them to the existing environmental conditions, particularly when data are missing to compute ET0-PM. Results show that ET0 estimates strongly correlate with ET0-PM with r values of up to 0.88. Particularly, the methods of Turc and Ivanov appropriately predict the ET0-PM in all climatic regions of Tunisia, constituing an appropriate alternative for determining ET0 when data are missing to compute ET0-PM. However, although the Turc method performs well with all climatic zones of Tunisia, the Ivanov method appears to be more appropriate to the northern areas (Béja and Bizerte), though a poorer agreement was found when using the Eagleman method. Estimates of ET0 by using the Hargreave-Samani (HS) formula for the east-southern area (Gabes, arid climate) show satisfactory agreement with ET0-PM estimates. It appears also that at a given site, the most appropriate method for ET0 estimation at annual scale may be different from that giving the best value of ET0 when considering the growing stages of the olive tree, for example, the method of Turc, although it was appropriate when estimating the annual ET0 value for Sousse, it wasn’t adequate at seasonal scale. In opposite, although the method of BC is suitable for stages 1, 2, 4 and 5 at Sousse, the appropriate method for the overall cycle is that of Turc. This indicates that there is no weather-based evapotranspiration equation that can be expected to predict evapotranspiration perfectly under every climatic situation due to simplification in formulation and errors in data measurement. However, we can say that when data are missing, ET0 can be estimated with a specific formula; that of Turc can be appropriately used for Tunis, Sidi Bouzid, Sousse and Béja at annual scale despite of their appartenance to different climatic regions, while the method of Ivanov is quite valuable for Bizerte and Nabeul. Results show also that values of P-ETc recorded during the irrigation period are negative even for young plantations, with lowest and highest deficits observed at Béja and Gabes cities, respectively. The driest period is that of July-August for all sites with F values exceeding 0.9 in most cases. Only 10% of water needs are supplied by rainfall during this period of fruit development. Therefore, irrigation is needed all time for adult trees even at the rainiest locations. For young plantations, irrigation becomes necessary beginning from the second period of tree development, i.e. April-June for Bizerte, Béja, Nabeul and Tunis and since the early spring period for both young and old plants for Gabes and Sidi-Bouzid. It appears from this analyze based on the seasonal rainfall frequencies and water needs computed with the PM-method, that there is a need for irrigating olive plantations aging more than 5 years in most case studies and especially when olive is cultivated in the western areas of Tunisia. Results indicate also that the use of no adequate method to estimate ET0 allowed overestimating or underestimating of irrigation water needs. So it is desirable to have for Tunisia a method that estimates ET consistently well and future research is needed to reconcile which should be the standard method of calculating the change in the crop coefficient over time. However, despite a quite good performance of the PM-equation in most applications, particularly when it is used for irrigation scheduling purposes, some problems may appear because of lack of local information on Kc-values and determination of the effective rainfall. Additional research is needed on developing crop coefficients that use the Penman-Monteith equation when calculating ET. In conclusion we can say that on the basis of the results produced, we can decide for each region and growing period if complementary irrigation is needed or not. Indicative amounts are given for each case study. 

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Masmoudi-Charfi, C. and Habaieb, H. (2014) Rainfall Distribution Functions for Irrigation Scheduling: Calculation Procedures Following Site of Olive (Olea europaea L.) Cultivation and Growing Periods. American Journal of Plant Sciences, 5, 2094-2133. doi: 10.4236/ajps.2014.513224.

References

[1] Nasr, Z. (2002) Mesures et estimations de l’évapotranspiration de référence en Tunisie. Annales de l’INRAT, 75, 241-256.
[2] Allen, R.G. (1996) Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation. Journal of Irrigation and Drainage Engineering, 122, 97-106.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1996)122:2(97)
[3] Hargreaves, G.H. and Samani, Z.A. (1982) Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108, 225-230.
[4] Hargreaves, G.H. and Samani, Z.A. (1985) Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1, 96-99.
http://dx.doi.org/10.13031/2013.26773
[5] Hargreaves, G.H. and Allen, R.G. (2003) History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129, 53-63.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
[6] Rana, G. and Katerji, N. (2000) Measurement and Estimation of Actual Evapotranspiration in the Field under Mediterranean Climate: A Review. European Journal of Agronomy, 13, 125-153.
http://dx.doi.org/10.1016/S1161-0301(00)00070-8
[7] Allen, R.G., Jensen, M.E., Wright, J.L. and Burman, R.D. (1989) Operational Estimates of Reference Evapotranspiration. Agronomy Journal, 81, 650-662.
http://dx.doi.org/10.2134/agronj1989.00021962008100040019x
[8] Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56, FAO, Rome, 300.
[9] Habaieb, H. and Masmoudi-Charfi, C. (2003) Calcul des besoins en eau des principales cultures exploitées en Tunisie: Estimation de l’évapotranspiration de référence par différentes formules empiriques. Cas des régions de Tunis, Béja et Bizerte, Sécheresse, 14, 1-9.
[10] Sammis, T.W., Wang, J. and Miller, D.R. (2011) The Transition of the Blaney-Criddle Formula to the Penman-Monteith Equation in the Western US. Journal of Service Climatology, 5, 1-11.
www.journalofserviceclimatology.org
[11] Denden, M. and Lemeur, R. (1999) Mesure de la transpiration par le modèle de Penman-Monteith. Sécheresse, 10, 39-44.
[12] Pereira, L.S., Perrier, A., Allen, R.G. and Alves, I. (1999) Evapotranspiration: Review of Concepts and Future Trends. Journal of Irrigation and Drainage Engineering, 125, 45-51.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:2(45)
[13] Villalobos, F.J., Orgaz, F., Testi, L. and Fereres, E. (2000) Measurement and Modeling of Evapotranspiration of Olive (Olea europaea L.) Orchards. European Journal of Agronomy, 13, 155-163.
http://dx.doi.org/10.1016/S1161-0301(00)00071-X
[14] Fernández, J.E., Palomo, M.J., Díaz-Espejo, A., Clothier, B.E., Green, S.R., Girón, I.R. and Moreno, F. (2001) Heat-Pulse Measurements of Sap Flow in Olives for Automating Irrigation: Tests, Root Flow and Diagnostics of Water Stress. Agricultural Water Management, 51, 99-123.
http://dx.doi.org/10.1016/S0378-3774(01)00119-6
[15] Droogers, P. and Allen, R.G. (2002) Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrigation and Drainage Systems, 16, 33-45.
http://dx.doi.org/10.1023/A:1015508322413
[16] Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Baselga, J., Smith, M., Pereira, L.S., Raes, D., Perrier, A., Alves, I., Walter, I. and Elliott, R. (2006) A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 PM-Method. Agricultural Water Management, 81, 1-22.
http://dx.doi.org/10.1016/j.agwat.2005.03.007
[17] Gong, L.B, Xu, C.Y., Chen, D.L., Halldin, S. and Chen, Y.D. (2006) Sensitivity of the Penman-Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. Journal of Hydrology, 329, 620-629.
http://dx.doi.org/10.1016/j.jhydrol.2006.03.027
[18] Orgaz, F., Testi, L., Villalobos, F.J. and Fereres, E. (2006) Water Requirements of Olive Orchards. Determination of Crop Coefficients for Irrigation Scheduling. Irrigation Science, 24, 77-84.
http://dx.doi.org/10.1007/s00271-005-0012-x
[19] Cai, J.B., Liu, Y., Lei, T.W. and Pereira, L.S. (2007) Estimating Reference Evapotranspiration with the FAO Penman-Monteith Equation Using Daily Weather Forecast Messages. Agricultural and Forest Meteorology, 145, 22-35.
http://dx.doi.org/10.1016/j.agrformet.2007.04.012
[20] Gavilán, P., Berengena, J. and Allen, R.G. (2007) Measuring versus Estimating Net Radiation and Soil Heat Flux: Impact on Penman-Monteith Reference ET Estimates in Semiarid Regions. Agricultural Water Management, 89, 275-286. http://dx.doi.org/10.1016/j.agwat.2007.01.014
[21] López-Moreno, J.I., Hess, T.M. and White, S.M. (2009) Estimation of Reference Evapotranspiration in a Mountainous Mediterranean Site Using the Penman-Monteith Equation with Limited Meteorological Data. Pirineos, 164, 7-31.
http://dx.doi.org/10.3989/pirineos.2009.v164.27
[22] Gocic, M. and Trajkovic, S. (2010) Software for Estimating Reference Evapotranspiration Using Limited Weather Data. Computers and Electronics in Agriculture, 71, 158-162.
http://dx.doi.org/10.1016/j.compag.2010.01.003
[23] Kra, E.Y. (2010) An Empirical Simplification of the Temperature Penman-Monteith Model for the Tropics. Journal of Agricultural Science, 2, 162-171.
[24] Tabari, H. (2010) Evaluation of Reference Crop Evapotranspiration Equations in Various Climates. Water Resources Management, 24, 2311-2337.
http://dx.doi.org/10.1007/s11269-009-9553-8
[25] Allen, R.G., Pereira, L.S., Howell, T.A. and Jensen, M.E. (2011) Evapotranspiration Information Reporting: I. Factors Governing Measurement Accuracy. Agricultural Water Management, 98, 899-920.
http://dx.doi.org/10.1016/j.agwat.2010.12.015
[26] Doorenbos, J. and Pruitt, W.O. (1974) Guidelines for Predicting Crop Water Requirements. FAO Irrigation and Drainage Paper 24, Rome, 179 p.
[27] Jensen, M.E., Burman, R.D. and Allen, R.G. (1990) Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice, 332, American Society of Civil Engineers, New York, 360.
[28] Er-raki, S., Chehbouni, G., Guemouria, N., Ezzahar, J., Duchemin, B., Boulet, G., Hadria, R., Lakhal, A., Chehbouni, A. and Rodriguez, J.C. (2004) Measurement of Evapotranspiration and Development Of Crop Coefficients of Olive (Olea europaea L.) Orchards in Semi Arid Region (Marrakech, Morocco). Projet INCO-WADEMED Actes du Seminaire Modernisation de l’Agriculture Irriguée, Rabat, du 19 au 23 avril 2004.
[29] Annandale, J.G., Jovanovic, N.Z., Benadé, N., Bchir, A., Boussadia, O., Lemeur, R. and Braham M. (2013) Water Use in Olive Orchards Estimated by Physiologic and Climatic Methods in Tunisia. European Scientific Journal, 9.
[30] Popova, Z., Kercheva, M. and Pereira, L.S. (2006) Validation of the FAO Methodology for Computing ET0 with Missing Climatic Data. Application to South Bulgaria. Irrigation and Drainage, 55, 201-215.
http://dx.doi.org/10.1002/ird.228
[31] Jabloun, M. and Sahli A. (2008) Evaluation of FAO-56 Methodology for Estimating Reference Evapotranspiration Using Limited Climatic Data Application to TUNISIA. Agricultural Water Management, 95, 707-715.
http://dx.doi.org/10.1016/j.agwat.2008.01.009
[32] Martinez, C.J. and Thepadia, M. (2010) Estimating Reference Evapotranspiration with Minimum Data in Florida. Journal of Irrigation and Drainage Engineering, 136, 494-501.
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000214
[33] Nandagiri, L. and Kovoor, G.M. (2005) Sensitivity of the Food and Agriculture Organization Penman-Monteith Evapotranspiration Estimates to Alternative Procedures for Estimation of Parameters. Journal of Irrigation and Drainage Engineering, 131, 238-248.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:3(238)
[34] Jensen, D.T., Hargreaves, G.H., Temesgen, B. and Allen, R.G. (1997) Computation of ET0 under Nonideal Conditions. Journal of Irrigation and Drainage Engineering, 123, 394-400.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1997)123:5(394)
[35] Thornthwaite, C.W. (1948) An Approach toward a Rational Classification of Climate. Geographical Review, 38, 55-94. http://dx.doi.org/10.2307/210739
[36] Allen, R.G., Smith, M., Perrier, A. and Pereira L.S. (1994) An Update for the Definition of Reference Evapo-transpiration. ICID Bul., 43, 1-34.
[37] Martí, P. and Zarzo, M. (2012) Multivariate Statistical Monitoring of ET0: A New Approach for Estimation in Nearby Locations Using Geographical Inputs. Agricultural and Forest Meteorology, 152, 125-134.
http://dx.doi.org/10.1016/j.agrformet.2011.08.008
[38] Laroussi, C. and Habaieb, H. (1993) Gestion des ressources en eau en conditions d'aridité, cas de la Tunisie. Etat de l’agriculture en Méditerranée: Ressources en eau: Développement et gestion dans les pays méditerranéens. Bari: CIHEAM, Cahiers Options Méditerranéennes, 92-108.
[39] Kassas, M. (2005) Aridity, Drought and Desertification. Chapter 7, 95-110. Export Marketing of Gum Arabic from Sudan, World Bank Policy Note March 2007.
www.afedonline.org/afedreport/english/book7.pdf
http://siteresources.worldbank.org/INTAFRMDTF/Resources/Gum_Arabic_Policy_Note.pdf
[40] Ben Mechlia, N., Oweis, T., Masmoudi, M., Khatteli, H., Ouessar, M., Sghaier, N., Anane, M. and Sghaier, M. (2009) Assessment of Supplemental Irrigation and Water Harvesting Potential: Methodologies and Case Studies from Tunisia. ICARDA, Aleppo, 36.
[41] Hamza, M. (2009) La politique de l’eau en Tunisie. Conférence Régionale sur la gouvernance de l’eau, Echanges d’expériences entre l’OCDE et les pays arabes, CITET-Tunis, 8-9 Juillet 2009.
[42] Ben Ahmed, C., Ben Rouina, B. and Boukhris, M. (2007) Effect of Water Deficit on Olive Trees cv. Chemlali under Field Conditions in Arid Region in Tunisia. Scientia Horticulturae, 113, 267-277.
http://dx.doi.org/10.1016/j.scienta.2007.03.020
[43] Ghrab, M., Gargouri, K. and Ben Mimoun, M. (2008) Long-Term Effect of Dry Conditions and Drought on Fruit Trees Yield in Dryland Areas of Tunisia. Options Méditerranéennes, Séries A, 80, 107-112.
[44] Ben Rouina, B., Trigui, A., D’andria, R., Boukhriss, M. and Chaieb, M. (2007) Effects of Water Stress and Soil Type on Photosynthesis, Leaf Water Potential and Yield of Olive Trees (Olea europaea L. cv Chemlali Sfax). Australian Journal of Experimental Agriculture, 47, 1484-1490.
http://dx.doi.org/10.1071/EA05206
[45] Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhris, M. and Abdallah, F.B. (2009) Saline Water Irrigation Effects on Antioxidant Defense System and Proline Accumulation in Leaves and Roots of Field-Grown Olive. Journal of Agricultural and Food chemistry, 57, 11484-11490.
http://dx.doi.org/10.1021/jf901490f
[46] Bedbabis, S., Ben Rouina, B. and Boukhris, M. (2010) The Effect of Waste Water Irrigation on the Extra Virgin Olive Oil Quality from the Tunisian Cultivar Chemlali. Scientia Horticulturae, 125, 556-561.
http://dx.doi.org/10.1016/j.scienta.2010.04.032
[47] Guerfel, M., Baccouri, B., Boujnah, D. and Zarrouk, M. (2007) Seasonal Changes in Water Relations and Gas Exhange in Leaves of Two Tunisian Olives (Olea europaea L.) Cultivars under Water Deficit. The Journal of Horticultural Science & Biotechnology, 82, 721-726.
[48] Guerfel, M., Baccouri, B., Boujnah, D. and Zarrouk, M. (2007) Evaluation of Morphological and Physiological Traits for Drought Tolerance in 12 Tunisian Olive Varieties (Olea europaea L.). Journal of Agronomy, 6, 356-361.
http://dx.doi.org/10.3923/ja.2007.356.361
[49] Boussadia, O., Mechri, B., Benmariem, F., Boussitta, W., Braham, M. and Ben Elhadj, S. (2008) Response to Drought of Two Olive Tree Cultivars (cv Koroneki and Meski). Scientia Horticulturae, 116, 388-393.
http://dx.doi.org/10.1016/j.scienta.2008.02.016
[50] Fernandez, J.E. (2006) Irrigation Management in Olive, Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), 295-305.
[51] Chehab, H., Mechri, B., Benmariem, F., Hammami, M., Ben Hadj, S. and Braham, M. (2009) Effect of Different Irrigation Regimes on Carbohydrate Partitioning in Leaves and Wood of Two Table Olive Cultivars (Olea europaea L. cv. Meski and Picholine). Agricultural Water Management, 96, 293-298.
http://dx.doi.org/10.1016/j.agwat.2008.08.007
[52] Dabbou, S., Chehab, H., Brahmi F., Esposto S., Elvaggini, R., Tatitcchi, A., Servili, M., Montedoro, G.F. and Hammami, M. (2010) Effect of Three Irrigation Regimes on Arbequina Olive Oil Produced under Tunisian Growing Conditions. Agricultural Water Management, 97, 763-768.
http://dx.doi.org/10.1016/j.agwat.2010.01.011
[53] Masmoudi, M.M. and Ben Mechlia, N. (2003) Deficit Irrigation of Orchards. In: Hamdy, A., Ed., Regional Action Programme (RAP): Water Resources Management and Water Saving in Irrigated Agriculture (WASIA PROJECT), Bari: CIHEAM, 203-216, Options Méditerranéennes: Série B, Etudes et Recherches.
[54] Mezghani-Ayachi, M., Masmoudi-Charfi, C., Gouia, M. and Laabidi, F. (2012) Vegetative and Reproductive Behavior of Some Olive Tree Varieties (Olea europaea L.) under Deficit Irrigation Regimes in Semi-Arid Conditions of Central Tunisia. Scientia Horticulturae, 146, 143-152.
http://dx.doi.org/10.1016/j.scienta.2012.07.030
[55] Masmoudi-Charfi, C. and Mezghani-Ayachi, M. (2013) Response of Olive Trees to Deficit Irrigation Regimes: Growth, Yield and Water Relations. Agricultural Research Updates, Vol. 6, Nova Sciences Publishers, New York.
[56] Fernandez, J.E., Paloma, M.J., Diaz-Espejo, A. and Giron, I.F. (2003) Influence of Partial Soil Wetting on Water Relation Parameters of the Olive Tree. Agronomie, 23, 545-552.
http://dx.doi.org/10.1051/agro:2003031
[57] Ghrab, M., Gargouri, K., Bentaher, H., Chartzoulakis, K., Ayadi, M., Ben Mimoun, M., Masmoudi, M., Ben Mechlia, N. and Psarras, G. (2013) Water Relations and Yield of Olive Tree (cv. Chemlali) in Response to Partial Root-Zone Drying (PRD) Irrigation Technique and Salinity under Arid Climate. Agricultural Water Management, 123, 1-11.
http://dx.doi.org/10.1016/j.agwat.2013.03.007
[58] Piedra, P.A., Humanes, G.J., Munoz-Cobo, P. and Martin, S. (1997) Plantations à haute densité. Concepts nécessaires. Olivae, 69.
[59] Larbi, A., Ayadi, M., Ben Dhiab, A. and Msallem, M. (2009) Comparative Study of Tunisian and Foreign Olive Cultivars Sustainability for High Density Planting System. Olivebioteq, Sfax-Tunisia, 177-181.
[60] Rallo, L. (1998) Fructification y Produccion, in El Cultivo del olivo. Junta de Andalucia y Grupo Mundi-Prensa, 107-136.
[61] Rallo, L. and Rapoport, H.F. (2001) Early Growth and Development of the Olive Fruit Mesocarp. Journal of Horticultural Science and Biotechnology, 76, 408-412.
[62] Masmoudi-Charfi, C. (2013) Growth of Young Olive Trees. Special Issue on Plant Growth and Development. American Journal of Plant Sciences, 4, 1316-1344.
http://www.scirp.org/journal/ajps
[63] Sanz-Cortès, F., Martinez-Calvo, J., Badenes M.L., Bleiholder, H., Hack, H., Llacer, G. and Meier, U. (2002) Phenological Growth Stages of Olive Trees (Olea europaea). Annals of Applied Biology, 140, 151-157.
http://dx.doi.org/10.1111/j.1744-7348.2002.tb00167.x
[64] Ben Mechlia, N. and Hamrouni, A. (1978) Alternance et production potentielle chez l’olivier irrigué. Séminaire International sur l’olivier et autres plantes oléagineuses cultivées en Tunisie, Mahdia, 3-7 Juillet 1978, 199-208.
[65] Le Bourdelles, J. (1977) Irrigation par goutte à goutte en oléiculture, principe de la méthode, installation et fonctionnement. Olea, 24, 31-49.
[66] Bouaziz, E. (1983) Intensification et irrigation à l’eau saumatre de l’olivier dans les grandes plaines du Centre Tunisien. Mémoire de 3ème cycle de l'INAT, Oléiculture-Oléotechnie, 126 p.
[67] Chehab, H. (2007) Etude écophysiologique, agronomique, de production et relation source-puits chez l’Olivier de table en rapport avec les besoins en eau. Thèse de Doctorat en Sciences Agronomiques, Institut National Agronomique de Tunisie, Tunis.
[68] Masmoudi-Charfi, C., Masmoudi, M.M. and Ben Mechlia, N. (2004) Irrigation de l’olivier: Cas des jeunes plantations intensives. Revue Ezzaitouna, 10, 37-51.
[69] Masmoudi-Charfi, C., Masmoudi, M.M., Mahjoub, I. and Mechlia, N.B. (2007) Water Requirements of Individual Olive Trees in Relation to Canopy and Root Development. Options Méditerranéennes, Série B, Studies and Research, Vol. 1. CIHEAM. Proceedings of the International Conference on Water saving in Mediterranean Agriculture and Future Research Needs, Valenzano, 14-17 February 2007, 73-80.
[70] Masmoudi-Charfi, C., Ayach-Mezghani, M., Gouia, M., Labidi, F., Lamari, S., Ouled Amor, A. and Bousnina, M. (2010) Water Relations of Olive Trees Cultivated under Deficit Irrigation Regimes. Scientia Horticulturae, 125, 573-578.
http://dx.doi.org/10.1016/j.scienta.2010.04.042
[71] Michelakis, N. (1990) Yield Response of Table and Oil Olive Tree Varieties to Different Water Doses under Drip Irrigation. Acta Horticulturae, 286, 271-274.
[72] Michelakis, N. (1995) Effet des disponibilités en eau sur la croissance et le rendement des oliviers. Olivae, 56, 29-39.
[73] Sole Riera, M.A. (1990) The Influence of Auxilary Drip Irrigation with Low Quantities of Water on Olive Trees in Las Garrigas (Cv Arbequina). Acta Horticulturae, 286, 307-310.
[74] Inglese, P., Barone, E. and Gullo, G. (1996) The Effect of Complementary Irrigation on Fruit Growth, Ripening Patter and Soil Characteristics of Olive (Olea europaea L.) Cv. Carolea. Journal of Horticultural Science, 71, 257-263.
[75] Fernandez, J.E. and Moreno, F. (1999) Water Use by the Olive Tree. Journal of Crop Production, 2, 101-162.
http://dx.doi.org/10.1300/J144v02n02_05
[76] Michelakis, N. (2000) Water Requirements of Olive Tree on the Various Vegetative Stages. Proceedings of the International Course on Water Management and Irrigation of Olive Orchards, Cyprus, April 2000, 39-49.
[77] Palomo, M.J., Moreno, F., Fernandez, J.E., Diaz-Espejo, A. and Giron, I.F. (2002) Determining Water Consumptive in Olive Orchards Using the Water Balance Approach. Agricultural Water Management, 55, 15-35.
http://dx.doi.org/10.1016/S0378-3774(01)00182-2
[78] Masmoudi-Charfi, C., Masmoudi, M.M., Karray-Abid, J. and Ben Mechlia, N. (2012) The Sap Flow Technique: A Precise Means to Estimate Water Consumption of Young Olive Trees (Olea europaea L.). Chapter 2 in Irrigation Management Technologies and Environmentam Impact, Nova Sciences Publishers, New York.
https://www.novapublishers.com/catalog/product_info.php.
[79] Cohen, Y. (1991) Determination of Orchard Water Requirement by a Combined Trunk Sap Flow and Meteorology Approach. Irrigation Science, 12, 93-98.
http://dx.doi.org/10.1007/BF00190016
[80] Villagra, M.M., Bacchi, O.O.S., Tuon, R.L. and Reichardt, K. (1995) Difficulties of Estimating Evapotranspiration from the Water Balance Equation. Agricultural and Forest Meteorology, 72, 317-325.
http://dx.doi.org/10.1016/0168-1923(94)02168-J
[81] Testi, L., Villalobos, F.J. and Orgaz, F. (2004) Evapotranspiration of a Young Irrigated Olive Orchard in Southern Spain. Agricultural and Forest Meteorology, 121, 1-18.
http://dx.doi.org/10.1016/j.agrformet.2003.08.005
[82] Todorovic, M., Karic, B. and Pereira, L.S. (2013) Reference Evapotranspiration Estimate with Limited Weather Data across a Range of Mediterranean Climates. Journal of Hydrology, 481, 166-176.
http://dx.doi.org/10.1016/j.jhydrol.2012.12.034.
[83] Masmoudi-Charfi, C. (2012) Quantitative Analysis of Soil Water Content in Young Drip Irrigated Olive Orchards. Advances in Horticultural Sciences, 26, 138-147.
[84] Caspari, H.W., Green, S.R. and Edwards, W.R.N. (1993) Transpiration of Well-Watered and Water-Stressed Asian Pear Trees as Determined by Lysimetry, Heat-Pulse, and Estimated by a Penman-Monteith Model. Agricultural and Forest Meteorology, 67, 13-27.
http://dx.doi.org/10.1016/0168-1923(93)90047-L
[85] Moriana, A.F., Perez-Lopez, D., Gomez-Rio, A., Salvador, M., Olmedilla, N., Ribas, F. and Fregapane, G. (2006) Irrigation Scheduling for Traditional Low-Density Olive Orchards: Water Relations and Influence on Oil Characteristics.
[86] Razieia, T. and Pereira, L.S. (2013) Reference Estimation of ET0 with Hargreaves-Samani and FAO-PM Temperature Methods for a Wide Range of Climates in Iran. Agricultural Water Management, 121, 1-18.
http://dx.doi.org/10.1016/j.agwat.2012.12.019
[87] Pereira, A.R., Green, E., Villa, N. and Nilson, A. (2005) Penman-Monteith Reference Evapotranspiration Adapted to Estimate Irrigated Tree Transpiration. Agricultural Water Management, 83, 153-161.
[88] Allen, R.G. (2002) Software for Missing Data Error Analysis of Penman-Monteith Reference Evapotranspiration. Irrigation Science, 21, 57-67.
http://dx.doi.org/10.1007/s002710100047
[89] Moreno, F., Fernandez, J.E., Clothier, B.E. and Green, S.R. (1996) Transpiration and Root Water Uptake by Olive Trees. Plant and Soil, 184, 85-96.
http://dx.doi.org/10.1007/BF00029277
[90] Abid-Karray, J. (2006) Bilan Hydrique d’un système de cultures intercalaires (Olivier—Culture maraîchère) en Tunisie Centrale: Approche expérimentale et essai de modélisation. Thèse de Doctorat, Université de Montpellier II, Montpellier, 172 p.
[91] Granier, A. (1985) Une nouvelle méthode pour la mesure des flux de sève brute dans le tronc des arbres. Annals of Forest Science, 42, 193-200.
http://dx.doi.org/10.1051/forest:19850204
[92] Penman, H.L. (1948) Natural Evaporation from Open Water, Bare Soil, and Grass. Proceedings of the Royal Society, A193, 116-140.
http://dx.doi.org/10.1098/rspa.1948.0037
[93] Priestley, C.H.B. and Taylor, R.J. (1972) On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters. Monthly Weather Review, 100, 81-92.
http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
[94] Bonachela, S., Orgaz, F., Villalobos, F. and Fereres, J.E. (1999) Measurement and Simulation of Evaporation from Soil in Olive Orchards. Irrigation Science, 18, 205-211.
http://dx.doi.org/10.1007/s002710050064
[95] L’olivier, C.O.I. (1997) Encyclopédie Mondiale de l’Olivier. Conseil oléicole international, Madrid, 479 p.
[96] Braham, M. and Boussadia, O. (2013) Annual Report of the National Institute of Olive Tree.
[97] INM (2013) National Institute of Meteorology. www.meteo.tn
[98] Victor, M. and San Diego, P. Potential Evapotranspiration by the Thornthwaite Method. State of University. Online_Thornthwaite: Potential Evapotranspiration by Thornthwaite Method.
[99] Yunusa, I.A.M., Walker, R.R., Loveys, B.R. and Blackmore, D.H. (2000) Determination of Transpiration in Irrigated Grapevines: Comparison of the Heat-Pulse Technique with Gravimetric and Micrometeorological Methods. Irrigation Science, 20, 1-8.
http://dx.doi.org/10.1007/PL00006714
[100] Temesgen, B., Eching, S., Davidoff, B. and Frame, K. (2005) Comparison of Some Reference Evapotranspiration Equations for California. Journal of Irrigation and Drainage Engineering, 131, 73-84.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:1(73)
[101] Alkaeed, O., Flores, C., Jinno, K. and Tsutsumi, A. (2006) Comparison of Several Reference Evapotranspiration Methods for Itoshima Peninsula Area, Fukuoka, Japan. Memoirs of the Faculty of Engineering, Kyushu University, Vol. 66, Vngsas, Fukuoka, 1-14.
[102] Paredes, P. and Rodrigues, G.C. (2010) Necessidades de água para a rega de milho em Portugal Continental considerando condic¸ ões de seca. In: Pereira, L.S., Mexia, J.T. and Pires, CA.L., Eds., Gestão do Risco em Secas, Métodos, Tecnologias e Desafios, Edic ões Colibri e CEER, Lisboa, 301-320.
[103] Trajkovic, S. (2007) Hargreaves versus Penman—Monteith under Humid Conditions. Journal of Irrigation and Drainage Engineering, 133, 38-42.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38)
[104] David, R.M. (2011) The Transition of the Blaney-Criddle Formula to the Penman-Monteith Equation in the Western United States. Journal of Service Climatology, 5, 1-11.
[105] Masmoudi-Charfi, C., Abid-Karray, J., Gargouri, K., Rhouma, A., Habaieb, H. and Daghari, H. (2012) Manuel d’Irrigation de l’Olivier, Techniques et Applications, Institut de l’Olivier, 110 p.
[106] Bonji, G. and Palliotti, A. (1994) Olive in Hand Book of Environmental Physiology of Fruit Crop. Anderson CRC Press Inc., Boca Raton, 165-187.
[107] Masmoudi-Charfi, C. (2006) Irrigation des plantations d’olivier. Document Technique, Institut de l’Olivier, Tunisie.
[108] Palese, A.M., Nuzzo, V., Dichio, B., Celano, G., Romano, M., Xiloyannis, C., Ferreira, M.I. and Jones, H.G. (2000) The Influence of Soil Water Content on Root Density in Young Olive Trees. Acta Horticulturae, 537, 329-336.
[109] Dichio, B., Romano, M., Nuzzo, V. and Xiloyannis, C. (2002) Soil Water Availability and Relationship between Canopy and Roots in Young Olive Trees (Cv. Coratina). Acta Horticulturae, 586, 255-258.
[110] Moriana, A.F., Orgaz, F., Pastor, M. and Fereres, E. (2003) Yield Response of a Mature Olive Orchard to Water Deficits. Journal of the American Society for Horticultural Science, 128, 425-431.
[111] Tognetti, R., D’Andria, R., Lavini, A. and Morelli, G. (2006) The Effect of Deficit Irrigation on Crop Yield and Vegetative Development of Olea europaea L. (cvs. Frantoio and Leccino). European Journal of Agronomy, 25, 356-364. http://dx.doi.org/10.1016/j.eja.2006.07.003
[112] Gucci, R., Lodolini, E. and Rapoport, H.F. (2007) Productivity of Olive Trees with Different Water Status and Crop Load. Journal of Horticultural Science and Biotechnology, 82, 648-656.
[113] Melgar, J.C., Mohamed, Y., Navarro, C., Parra, M.A., Benlloch, M. and Fernandez-Escobar, R. (2008) Long-Term Growth and Yield Responses of Olive Trees to Different Irrigation Regimes. Agricultural Water Management, 95, 968-972.
http://dx.doi.org/10.1016/j.agwat.2008.03.001
[114] Iniesta, F., Testi, L., Orgaz, F. and Villalobos, F.J. (2009) The Effects of Regulated and Continuous Deficit Irrigation on the Water Use, Growth and Yield of Olive Trees. European Journal of Agronomy, 25, 258-265.
http://dx.doi.org/10.1016/j.eja.2008.12.004
[115] Connor, D.J. and Fereres, E. (2005) The Physiology of Adaptation and Yield Expression in Olive. Horticultural Review, Vol. 31, John Wiley & Sons, Inc., Hoboken.
[116] Boulouha, B. (1986) Croissance, Fructification et leur interaction sur la production chez la Picholine Marocaine, Olea, 17, 41-47.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.