Share This Article:

Cyclosporin A inhibits the growth of neonatal MHC-expressing myotubes independent of NFATc1 and NFATc3 in the mechanically overloaded soleus muscle of mice

Abstract Full-Text HTML Download Download as PDF (Size:881KB) PP. 7-16
DOI: 10.4236/ajmb.2011.11002    4,692 Downloads   10,053 Views   Citations


ABSTRACT The molecular signaling pathway linked to hyper-trophy of the anti-gravity/postural soleus muscle af-ter mechanical overloading has not been identified. Using Western blot and immunohistochemical analy-ses, we investigated whether the amounts of NFATc3, GSK-3?, NFATc1, and neonatal MHC change in the mechanically overloaded soleus muscle after cyc-losporine A (CsA) treatment. Adult male ICR mice were subjected to a surgical ablation of the gas-trocnemius muscle and treated with either CsA (25 mg/Kg) or vehicle once daily. They were sacrificed at 2, 4, 7, 10, and 14 days post-injury. Mechanical over-loading resulted in a significant increase in the wet weight and the cross-sectional area of slow and fast fibers of the soleus muscle in placebo-treated mice but not CsA-treated mice. After 4 days of mechanical overloading, we observed a similar co-localization of neonatal MHC and NFATc3 in several myotubes of both mice. The placebo-treated mice possessed larger myotubes with neonatal MHC than CsA-treated mice. At 7 days, mechanical overloading induced marked expression of neonatal MHC in myotubes and/or myofibers. Such neonatal MHC-positive fibers emerged less often in the hypertrophied soleus mus-cle subjected to treatment with CsA. CsA treatment did not significantly change the amount of GSK-3? protein in the soleus muscle. The modulation of growth in neonatal MHC-positive myofibers by CsA treatment may inhibit the hypertrophic process in the soleus muscle after mechanical overloading.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sakuma, K. and Yamaguchi, A. (2011) Cyclosporin A inhibits the growth of neonatal MHC-expressing myotubes independent of NFATc1 and NFATc3 in the mechanically overloaded soleus muscle of mice. American Journal of Molecular Biology, 1, 7-16. doi: 10.4236/ajmb.2011.11002.


[1] Glass, D.J. (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature Cell Biology, 5, 87-90. doi:10.1038/ncb0203-87
[2] DeVol, D.L., Rotwein, P., Sadow, J.L., Novakofski, J. and Bechtel, P.J. (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. American Journal of Physiology, 259, E89-E95.
[3] Sakuma, K., Watanabe, K., Totsuka, T., Uramoto, I., Sakamoto, K. and Sano, M. (1998) Differential adaptations of insulin-like growth factor, basic fibroblast growth factor and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: An immunohistochemical study. Acta Neuropathologica (Berl), 95, 123-130. doi:10.1007/s004010050775
[4] Coleman, M.E., DeMayo, F., Yin, K.C., Lee, H.M., Geske, R., Montgomery, C. and Schwartz, R.J. (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry, 270, 12109-12116. doi:10.1074/jbc.270.20.12109
[5] Musaró, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R., Sweeney, H.L. and Rosenthal, N. (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 27, 195-200. doi:10.1038/84839
[6] Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J.C., Glass, D.J. and Yancopoulos, G.D. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3, 1014-1019. doi:10.1038/ncb1101-1014
[7] Lai, K.-M., Gonzalez, M., Poueymirou, W.T., Kline, W. O., Na, E., Zlotchenko, E., Stitt, T.N., Economides, A.N., Yancopoulos, G.D. and Glass, D.J. (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Molecular and Cellular Biology, 24, 9295-9304. doi:10.1128/MCB.24.21.9295-9304.2004
[8] Dunn, S.E., Chin, E.R. and Michel, R.N. (2000) Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. Journal of Cell Biology, 151, 663-672. doi:10.1083/jcb.151.3.663
[9] Abbott, K.L., Friday, B.B., Thaloor, D., Murphy, T.J. and Pavlath, G.K. (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Molecular Biology of the Cell, 9, 2905-2916.
[10] Lara-Pezzi, E., Winn, N., Paul, A., McCullagh, K., Slominsky, E., Santini, M.P., Mourkioti, F., Sarathchandra, P., Fukushima, S., Suzuki, K. and Rosenthal, N. (2007) A naturally occurring calcineurin variant inhibits Foxo activity and enhances skeletal muscle regeneration. Journal of Cell Biology, 179, 1205-1218. doi:10.1083/jcb.200704179
[11] Sakuma, K., Nishikawa, J., Nakao, R., Watanabe, K., Totsuka, T., Nakano, H., Sano, M. and Yasuhara, M. (2003) Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathologica (Berl), 105, 271-280.
[12] Sakuma, K., Nakao, R., Aoi, W., Inashima, S., Fujikawa, T., Hirata, M., Sano, M. and Yasuhara, M. (2005) Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropathologica (Berl), 110, 269-280. doi:10.1007/s00401-005-1049-x
[13] Sakuma, K. and Yamaguchi, A. (2010) The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. Journal of Biomedicine and Biotechnology, Article ID: 721219.
[14] Chin, E.R., Olson, E.N., Richardson, J.A., Yang, Q., Humphries, C., Shelton, J.M., Wu, H., Zhu, W., Bassel-Duby, R. and Williams, R.S. (1998) A calcineurin- dependent transcriptional pathway controls skeletal muscle fiber type. Genes and Development, 12, 2499-2509. doi:10.1101/gad.12.16.2499
[15] Dunn, S.E., Simard, A.R., Bassel-Duby, R., Williams, R.S. and Michel, R.N. (2001) Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. Journal of Biological Chemistry, 276, 45243-45254. doi:10.1074/jbc.M105445200
[16] Oh, M., Rybkin, I.I., Copeland, V., Czubryt, M.P., Shelton, J.M., van Rooij, E., Richardson, J.A., Hill, J. A., De Windt, L.J., Bassel-Duby, R., Olson, E.N. and Rothermel, B.A. (2005) Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Molecular and Cellular Biology, 25, 6629-6638. doi:10.1128/MCB.25.15.6629-6638.2005
[17] Naya, F.J., Mercer, B., Shelton, J., Richardson, J.A., Williams, R.S. and Olson, E.N. (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. Journal of Biological Chemistry, 275, 4545-4548. doi:10.1074/jbc.275.7.4545
[18] Sakuma, K., Akiho, M., Nakashima, H., Nakao, R., Hirata, M., Inashima, S., Yamaguchi, A. and Yasuhara, M. (2008) Cyclosporin A modulates cellular localization of MEF2C protein and blocks fiber hypertrophy in the overloaded soleus muscle of mice. Acta Neuropathologica (Berl), 115, 663-674.
[19] Talmadge, R.J., Otis, J.S., Rittler, M.R., Garcia, N.D., Spencer, S.R., Lees, S.J. and Naya F.J. (2004) Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biology, 5, Article 28. doi:10.1186/1471-2121-5-28
[20] Dunn, S.E. and Michel, R.N. (1997) Coordinated expression of myosin heavy chain isoforms and metabolic enzymes within overloaded rat muscle fibers. American Journal of Physiology, 273, C371-C383.
[21] Phelan, J.N. and Gonyea, W.J. (1997) Effect of radiation on satellite cell activity and protein expression in over loaded mammalian skeletal muscle. Anatomical Record, 247, 179-188. doi:10.1002/(SICI)1097-0185(199702)247:2<179::AID-AR4>3.0.CO;2-T
[22] Roy, R.R., Talmadge, R.J., Fox, K., Lee, M., Ishihara, A. and Edgerton, V.R. (1997) Modulation of MHC isoforms in functionally overloaded and exercised rat plantaris fibers. Journal of Applied Physiology, 83, 280-290.
[23] Gollnick, P.D., Timson, B.F., Moore, R.L. and Riedy, M. (1981) Muscular enlargement and number of fibers in skeletal muscle of rats. Journal of Applied Physiology, 50, 936-943.
[24] Clarke, M.S.F., Caldwell, R.W., Miyake, K. and McNeil, P.L. (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circulation Research, 76, 927-934.
[25] McNeil, P.L. and Steinhardt, R.A. (2003) Plasma membrane disruption: Repair, prevention, adaptation. Annual Review of Cell and Developmental Biology, 19, 697-731. doi:10.1146/annurev.cellbio.19.111301.140101
[26] Akiho, M., Nakashima, H., Sakata, M., Yamasa, Y., Yamaguchi, A. and Sakuma, K. (2010) Expression profile of Notch-1 in mechanically overloaded plantaris muscle of mice. Life Sciences, 86, 59-65. doi:10.1016/j.lfs.2009.11.011
[27] Armstrong, R.B., Marum, P., Tullson, P. and Saubert, C.W., IV (1979) Acute hypertrophic response of skeletal muscle to removal of synergists. Journal of Applied Physiology, 46, 835-842.
[28] Thompson, R.W., McClung, J.M., Baltgalvis, K.A., Davis, J.M. and Carson, J.A. (2006) Modulation of overload-induced inflammation by aging and anabolic steroid administration. Experimental Gerontology, 41, 1136-1148. doi:10.1016/j.exger.2006.08.013
[29] Musaró, A., McCullagh, K.J.A., Naya, F.J., Olson, E.N. and Rosenthal, N. (1999) IGF-I induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400, 581-585. doi:10.1038/23060
[30] Delling, U., Tureckova, J., Lim, H.W., De Windt, L.J., Rotwein, P. and Molkentin, J.D. (2000) A calcineurin- NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Molecular and Cellular Biology, 20, 6600-6611. doi:10.1128/MCB.20.17.6600-6611.2000
[31] Van der Velden, J.L.J., Schols, A.M.W.J., Willems, J., Kelders, M.C.J.M. and Langen, R.C.J. (2008) Glycogen synthase kinase 3? suppresses myogenin differentiation through negative regulation of NFATc3. Journal of Biological Chemistry, 283, 358-366. doi:10.1074/jbc.M707812200
[32] Michel, R.N., Dunn, S.E. and Chin, E.R. (2004) Calcineurin and skeletal muscle growth. Proceedings of the Nutrition Society, 63, 341-349. doi:10.1079/PNS2004362
[33] Periasamy, M., Gregory, P., Martin, B.J. and Stirewalt, W.S. (1989) Regulation of myosin heavy-chain gene expression during skeletal-muscle hypertrophy. Biochemical Journal, 257, 691-698.
[34] McCormick, K.M. and Schultz, E. (1992) Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy. Developmental Biology, 150, 319-334. doi:10.1016/0012-1606(92)90245-C
[35] Al-Shanti, N. and Stewart, C.E. (2009) Ca2+/calmodulin- dependent transcriptional pathways: Potential mediators of skeletal muscle growth and development. Biological Reviews Cambridge Phylosophical Society, 84, 637-652. doi:10.1111/j.1469-185X.2009.00090.x
[36] Semsarian, C., Wu, M.-J., Ju, Y.-K., Marciniec, T., Yeoh, T., Allen, D.G., Harvey, R.P. and Graham, R.M. (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 400, 576-581. doi:10.1038/23054
[37] Calabria, E., Ciciliot, S., Moretti, I., Garcia, M., Picard, A., Dyar, K.A., Pallafacchina, G., Tothova, J., Schiaffino, S. and Murgia, M. (2009) NFAT isoforms control activity-dependent muscle fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 106, 13335-13340. doi:10.1073/pnas.0812911106
[38] Horsley, V., Friday, B.B., Matteson, S., Kegley, K.M., Gephart, J. and Pavlath, G.K. (2001) Regulation of the growth of multinucleated muscle cells by an NFATc2- dependent pathway. Journal of Cell Biology, 153, 329-338. doi:10.1083/jcb.153.2.329
[39] Kegley, K.M., Gephart, J., Warren, G.L. and Pavlath, G. K. (2001) Altered primary myogenesis in NFATc3-/- mice leads to decreased muscle size in the adult. Developmental Biology, 232, 115-126. doi:10.1006/dbio.2001.0179
[40] Parsons, S.A., Wilkins, B.J., Bueno, O.F. and Molkentin, J.D. (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Molecular and Cellular Biology, 23, 4331-4343. doi:10.1128/MCB.23.12.4331-4343.2003
[41] Swoap, S.J., Hunter, R.B., Stevenson, E.J. Felton, H.M., Kansagra, N.V., Lang, J.M., Esser, K.A. and Kandarian, S.C. (2000) The calcineurin-NFAT pathway and muscle fiber-type gene expression. American Journal of Physiology, 279, C915-C924.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.