Share This Article:

Local Implementations of Non-Local Quantum Gates in Linear Entangled Channel

Abstract Full-Text HTML XML Download Download as PDF (Size:371KB) PP. 97-103
DOI: 10.4236/jqis.2014.42010    3,297 Downloads   4,230 Views   Citations

ABSTRACT

In this paper, we demonstrate n-party controlled unitary gate implementations locally on arbitrary remote state through linear entangled channel where control parties share entanglement with the adjacent control parties and only one of them shares entanglement with the target party. In such a network, we describe the protocol of simultaneous implementation of controlled-Hermitian gate starting from three party scenarios. We also explicate the implementation of three party controlled-Unitary gates, a generalized form of Toffoli gate and subsequently generalize the protocol for n-party using minimal cost.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Saha, D. , Nandan, S. and Panigrahi, P. (2014) Local Implementations of Non-Local Quantum Gates in Linear Entangled Channel. Journal of Quantum Information Science, 4, 97-103. doi: 10.4236/jqis.2014.42010.

References

[1] Nielsen, M.A. and Chuang, I.J. (2002) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[2] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, Article ID: 1895.
http://dx.doi.org/10.1103/PhysRevLett.70.1895
[3] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H. and Zeilinger, A. (1997) Experimental Quantum Teleportation. Nature (London), 390, 575-579.
http://dx.doi.org/10.1038/37539
[4] Bennett, C.H. and Wiesner, S.J. (1992) Communication via One and Two Particle Operators on Einstein-Podolsky-Rosen States. Physical Review Letters, 69, 2881.
http://dx.doi.org/10.1103/PhysRevLett.69.2881
[5] Bandyopadhyay, S. (2000) Teleportation and Secret Sharing with Pure Entangled States. Physical Review A, 62, Article ID: 012308.
http://dx.doi.org/10.1103/PhysRevA.62.012308
[6] Hillery, M., Buzek, V. and Berthiaume, A. (1999) Quantum Secret Sharing. Physical Review A, 59, Article ID: 1829.
http://dx.doi.org/10.1103/PhysRevA.59.1829
[7] Pati, A.K. (2000) Minimum Classical Bit for Remote Preparation and Measurement of a Qubit. Physical Review A, 63, Article ID: 014302.
http://dx.doi.org/10.1103/PhysRevA.63.014302
[8] Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W. and Winter, A. (2005) Remote Preparation of Quantum States. IEEE Transactions on Information Theory, 51, 56-74.
http://dx.doi.org/10.1109/TIT.2004.839476
[9] Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A. and Weinfurter, H. (1995) Elementary Gates for Quantum Computation. Physical Review A, 52, Article ID: 3457.
http://dx.doi.org/10.1103/PhysRevA.52.3457
[10] Eisert, J., Jacobs, K., Papadopoulos, P. and Plenio, M.B. (2000) Optimal Local Implementation of Nonlocal Quantum Gates. Physical Review A, 62, Article ID: 052317.
http://dx.doi.org/10.1103/PhysRevA.62.052317
[11] Collins, D., Linden, N. and Popescu, S. (2001) Nonlocal Content of Quantum Operations. Physical Review A, 64, Article ID: 032302.
http://dx.doi.org/10.1103/PhysRevA.64.032302
[12] Dur, W. and Cirac, J.I. (2001) Nonlocal Operations: Purification, Storage, Compression, Tomography, and Probabilistic Implementation. Physical Review A, 64, Article ID: 012317.
http://dx.doi.org/10.1103/PhysRevA.64.012317
[13] Chefles, A., Gilson, C.R. and Barnett, S.M. (2001) Entanglement, Information, and Multiparticle Quantum Operations. Physical Review A, 63, Article ID: 032314.
http://dx.doi.org/10.1103/PhysRevA.63.032314
[14] Cirac, J.I., Dur, W., Kraus, B. and Lewenstein, M. (2001) Entangling Operations and Their Implementation Using a Small Amount of Entanglement. Physical Review Letters, 86, Article ID: 544.
http://dx.doi.org/10.1103/PhysRevLett.86.544
[15] Ye, M.Y., Zhang, Y.S. and Guo, G.C. (2006) Efficient Implementation of Controlled Rotations by Using Entanglement. Physical Review A, 73, Article ID: 032337.
http://dx.doi.org/10.1103/PhysRevA.73.032337
[16] Berry, D.W. (2007) Implementation of Multipartite Unitary Operations with Limited Resources. Physical Review A, 75, Article ID: 032349.
http://dx.doi.org/10.1103/PhysRevA.75.032349
[17] Wang, A.M. (2007) Combined and Controlled Remote Implementations of Partially Unknown Quantum Operations of Multiqubits Using Greenberger-Horne-Zeilinger States. Physical Review A, Article ID: 75, Article ID: 062323.
http://dx.doi.org/10.1103/PhysRevA.75.062323
[18] Dang, G.F. and Fan, H. (2008) Remote Controlled-Not Gate of d-Dimension. e-print arXiv:quant-ph/0711.3714v2.
[19] Yu, L., Griffths, R.B. and Cohen, S.M. (2010) Efficient Implementation of Bipartite Nonlocal Unitary Gates Using Prior Entanglement and Classical Communication. Physical Review A, 81, Article ID: 062315.
http://dx.doi.org/10.1103/PhysRevA.81.062315
[20] Cohen, S.M. (2010) Optimizing Local Protocols for Implementing Bipartite Nonlocal Unitary Gates Using Prior Entanglement and Classical Communication. Physical Review A, 81, Article ID: 062316.
http://dx.doi.org/10.1103/PhysRevA.81.062316
[21] Stahlke, D. and Griffiths, R.B. (2011) Entanglement Requirements for Implementing Bipartite Unitary Operations. Physical Review A, 84, Article ID: 032316.
http://dx.doi.org/10.1103/PhysRevA.84.032316
[22] Zhou, X., Leung, D.W. and Chuang, I.L. (2000) Methodology for Quantum Logic Gate Construction. Physical Review A, 62, Article ID: 052316.
http://dx.doi.org/10.1103/PhysRevA.62.052316
[23] Yang, C.P. (2008) A New Protocol for Constructing Nonlocal n-Qubit Controlled-U Gates. Physical Review A, 372, 1380-1386.
http://dx.doi.org/10.1016/j.physleta.2007.09.048
[24] Jang, J., Lee, J., Kim, M.S. and Park, Y.J. (2001) Probabilistic Nonlocal Gate Operation via Imperfect Entanglement. e-print arXiv:quant-ph/0101107v1.
[25] Chen, L. and Chen, Y.X. (2005) Probabilistic Implementation of a Nonlocal Operation Using a Nonmaximally Entangled State. Physical Review A, 71, Article ID: 054302.
http://dx.doi.org/10.1103/PhysRevA.71.054302
[26] Groisman, B. and Reznik, B. (2005) Implementing Nonlocal Gates with Nonmaximally Entangled States. Physical Review A, 71, Article ID: 032322.
http://dx.doi.org/10.1103/PhysRevA.71.032322
[27] Yao, C.M. and Cao, B.F. (2009) Efficient Implementation of a Nonlocal Gate with Nonmaximal Entanglement. Physical Review A, 373, 1011-1014.
http://dx.doi.org/10.1016/j.physleta.2009.01.039
[28] Huang, Y.F., Ren, X.F., Zhang, Y.S., Duan, L.M. and Guo, G.C. (2004) Experimental Teleportation of a Quantum Controlled-Not Gate. Physical Review Letters, 93, Article ID: 240501.
http://dx.doi.org/10.1103/PhysRevLett.93.240501
[29] Huelga, S.F., Plenio, M.B., Xiang, G.Y., Li, J. and Guo, G.C. (2005) Remote Implementation of Quantum Operations. Journal of Optics B Quantum and Semiclassical Optics, 7, S384.
http://dx.doi.org/10.1088/1464-4266/7/10/026
[30] Xia, Y., Song, J. and Song, H.S. (2008) Controlled Local Implementation of Nonlocal Operations. Journal of Modern Optics, 55, 3063-3070.
http://dx.doi.org/10.1080/09500340802331856

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.