Share This Article:

The Corrosion Protection Behaviour of Zinc Rich Epoxy Paint in 3% NaCl Solution

Abstract Full-Text HTML Download Download as PDF (Size:4641KB) PP. 51-60
DOI: 10.4236/aces.2011.12009    12,128 Downloads   27,013 Views   Citations

ABSTRACT

Electrochemical impedance spectroscopy (EIS) in the l00 kHz-10 mHz frequency range was employed as the main electrochemical technique to study the corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl solution. The EIS results obtained at the open-circuit corrosion potential have been interpreted using a model involving the impedance of particle to particle contact to account for the increasing resistance between zinc particles with immersion period, in addition to the impedance due to the zinc surface oxide layer and the electrical resistivity of the binder. Galvanic current and dc potential measurements allowed us to conclude that the cathodic protection effect of the paint takes some time to be achieved. The loss of cathodic protection is due to a double effect: the decrease of the Zn/Fe area ratio due to Zn corrosion and the loss of electric contact between Zn to Zn particles. Even when the cathodic protection effect by Zn dust become weak, the substrate steel is still protected against corrosion due to the barrier nature of the ZRP film reinforced by Zn.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Hammouda, H. Chadli, G. Guillemot and K. Belmokre, "The Corrosion Protection Behaviour of Zinc Rich Epoxy Paint in 3% NaCl Solution," Advances in Chemical Engineering and Science, Vol. 1 No. 2, 2011, pp. 51-60. doi: 10.4236/aces.2011.12009.

References

[1] C. H. Hare, “Mechanisms of Corrosion Protection with Surface Treated Wollastonite Pigments,” The Journal of Protective Coatings, Vol. 14, 1998. pp. 47-82.
[2] C. M. Abreu, M. Izquierdo, M. Keddam, X. R. Novoa and H. Takenouti, “Electrochemical Behaviour of Zinc- Rich Epoxy Paints in 3% NaCl Solution,” Electrochimica Acta, Vol. 41, No. 15, 1996, pp. 2405-2415. doi:10.1016/0013-4686(96)00021-7
[3] M. Morcillo, R. Barajas, S. Feliu and J. M. Bastidas, “Electrochemical Behavior of Zinc-Rich Coatings”, Journal of Materials Science, Vol. 25, No. 5, 1990, pp. 2441-2446. doi:10.1007/BF00638039
[4] S. A. Lindquist, L. Més-saros and L. Svenson, “Aspects of Galvanic Action of Zinc-Rich Paints Electrochemical Investigation of Eight Commercial Primers,” Journal of Oil & Colour Chemists Association, Vol. 68, 1985, p. 10.
[5] F. L. Fragata, M. Sebr?o and E. T. Serra, “The Influence of Particle Size and Metallic Zinc Content in the Behaviour of Zinc-Rich Paints,” Journal of Coatings Technology, Vol. 6, 1987, p.12.
[6] B. D. Amo and C. A. Giùdice, “Influence of Some Variables on Behaviour of Zinc-Rich Paints Based on Ethyl Silicate and Epoxy Binders,” Proceedings 6th International Corrosion Congress, Italy, April 1990, p. 347.
[7] D. Pereira, J. D. Scantlebury, M. G. S. Ferreira and M. C. Almeida, “The Application of Electrochemical Measurements to the Study and Behaviour of Zinc–Rich Coatings,” Corrosion Science, Vol. 30, No. 11, 1990, pp. 1135-1147. doi:10.1016/0010-938X(90)90061-9
[8] Z. W. Wicks, Jr., F. N. Jones and S. P. Pappas, “Organic Coatings: Science and Technology,” 2nd Edition, John Wiley and Sons, New York, 1994.
[9] S. Feliu, R. Barajas, J. M. Bastidas and M. Morcillo, “Mechanism of Cathodic Protection of Zinc-Rich Paints by Electro-chemical Impedance Spectroscopy,” Journal of Coating Technology, Vol. 61, No. 775, 1989, pp. 63-69.
[10] S. Feliu, R. Barajas, J. M. Bastidas and M. Morcillo, “Mechanism of Cathodic Protection of Zinc-Rich Paints by Electrochemical Impedance Spectroscopy. II: Barrier stage,” Journal of Coating Technology, Vol. 61, 1989, pp. 71-76.
[11] D. Pereira, J. D. Scantlebury, M. G. S. Ferreira and M. E. Almeida, “The Application of Elec-trochemical Measurements to the Study and Behaviour of Zinc-Rich Coatings,” Corrosion Science, Vol. 30, No. 11, 1990, pp. 1135-1147. doi:10.1016/0010-938X(90)90061-9
[12] R. A. Armas, C. A. Gervasi, A. D. Sarli, S. G. Real and J. R. Vilche, “Zinc-Rich Paints on Steel in Artificial Seawater by Electrochemical Impedance Spectroscopy,” Corrosion, Vol. 48, No. 5, 1992, pp. 379-383. doi:10.5006/1.3315948
[13] F. L. Fragata, C. R. S. Mussoi, C. F. Moulin, I. C. P. Margarit and O. R. Mattos, “Influence of Extender Pigments on the Performance of Ethyl Silicate Zinc-Rich Paints,” Journal of Coating Technology, Vol. 65, No. 816, 1993, pp. 103-109.
[14] S. Feliu, R. Barajas, J. M. Bastidas, M. Morcillo and S. Feliu, “Electrochemical Impedance; Analysis and Interpretation, ASTM STP 1188,” In: J. R. Scully, D. C. Silverman and M. W. Kendig, Eds., American Society for Testing and Materials, American Technical Publishers Ltd., Philadelphia, 1993, p. 438. doi:10.1520/STP18084S
[15] S. G. Real, A. C. Elias, J. R. Vilche, C. A. Gervasi and A. R. D. Sarli, “An Elec-trochemical Impedance Spectroscopy Study of Zinc-Rich Paint,” Electrochimica Acta, Vol. 38, No. 14, 1993, pp. 2029-2035. doi:10.1016/0013-4686(93)80336-X
[16] C. A. Gervasi, A. R. D. Sarli, E. Cavalcanti, O. Ferraz, E. C. Bucharsky, S. G. Real and J. R. Vilche, “The Corrosion Protection of Steel in Sea Water Using Zinc-Rich Alkyd Paints, an As-sesment of the Pigment –Content Effect by EIS,” Corro-sion Science, Vol. 36, No. 17, 1994, pp. 1963-1972. doi:10.1016/0010-938X(94)90002-7
[17] C. M. Abreu, M. Izquierdo, P. Merino, X. R. Novoa and C. Perez, “A New Approach to the Determination of the Cathodic Pro-tection Period in Zinc-Rich Paints,” Corrosion, Vol. 55, No. 12, 1999, p. 1173. doi:10.5006/1.3283955
[18] S. Feliu, Jr., M. Morcillo and S. Feliu, “Deterioration of Cathodic Protection Action of Zinc-Rich Paint Coatings in Atmospheric Exposure,” Corrosion, Vol. 57, No. 7, 2001, pp. 591-597. doi:10.5006/1.3290386
[19] J. R. Vilche, E. C. Buchar-sky and C. A. Giudice, “Application of EIS and SEM to Evaluate the Influence of Pigment Shape and Content in ZRP Formulations on the Corrosion Prevention of Naval Steel,” Corrosion Science, Vol. 44, No. 44, 2002, pp. 1287-1309. doi:10.1016/S0010-938X(01)00144-5
[20] C. M. Abreu, L. Espada, M. Izquierdo, P. Merino and X. R. Novoa, “Zinc Rich Powder Coatings in Sea Water,” In: Fedrizzi and Bonora Ed., Eurocorr’96, Acropolis, Nice- France, Vol. 20, 1997, p. 23.
[21] F. Mansfeld, J. B. Lumsden, S. L. Jeanjaquet and S. Tsa?, “Evaluation of Surface Pre-treatment Methods for Application of Organic Coatings,” Corrosion Control by Organic Coatings, 1981, pp. 227-237.
[22] X. R. Novoa, M. Izquierdo, P. Merino and L. Espada, “Electrochemical Impedance Spectroscopy and Zero Resistance Ammetres (ZRA) as Tools for Studying the Behaviour of Zinc-Rich Inorganic Coatings,” Material Science Forum, Vol. 44-45, 1989, pp. 223-234. doi:10.4028/www.scientific.net/MSF.44-45.223
[23] K. Belmokre, N Azzouz, F. Kermiche, M. Wery and J. Pagetti, “Corrosion Study of Carbon Steel Used by Sona-trach International Society, Protected by a Primer by Electrochemical Impedance Spectroscopy in a Deaerated Simulated Soil,” Materials Science Forum, Vol. 289-292, 1998, pp. 359-371. doi:10.4028/www.scientific.net/MSF.289-292.359
[24] J. M. Genin, D. Rezel, P. Bauer and A. O. Beral, “Electro-chemistry Methods in Corrosion Research, Vol. 8, 1986, pp. 477-490.
[25] H. J. A. Breur, G. M. Ferrari, J. van Turnhout and J. H. W. de Wit, “Modern Experimental Techniques for the Assessment of the Water Sensivity of Organic Coatings,” Symposium New trends in Organic Coatings for Marine Environments, Lisbon, 22-24 July 1998, pp.1-8.
[26] F. Deflorian, L. Fedrizzi, D. Lenti and P. L. Bonora, “On the Corrosion Protection Properties of Fluoropolymer Coatings,” Progress in Organic Coatings, Vol. 22, No. 1-4, 1993, pp. 39-53. doi:10.1016/0033-0655(93)80014-2
[27] C. Lin, T. Nguyen and M. McKnight, “Relation between AC Im-pedance Data and Degradation of Coated Steel. I: Effects of Surface Roughness and Contamination on the Corro-sion Behavior of Epoxy-Coated Steel,” Progress in Or-ganic Coatings, Vol. 20, No. 2, 1992, pp. 169-186.
[28] H. Marchebois, C. Savall, J. Bernard and S. Touzain, “Electrochemical Behavior of Zinc-Rich Powder in Artificial Sea Water,” Electrochimica Acta, Vol. 49, No. 17-18, 2004, pp. 2945-2959.
[29] G. Grundmeier, W. Schmidt and M. Stratmann, “Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation,” Electrochimica Acta, Vol. 45, No. 15-16, 2000, pp. 2515- 2533. doi:10.1016/S0013-4686(00)00348-0
[30] A. Meroufel and S. Touzain, “EIS Characterisation of New Zinc-Rich Powder Coatings,” Progress in Organic Coatings, Vol. 59, No. 3, 2007, pp. 197-205. doi:10.1016/j.porgcoat.2006.09.005
[31] C. M. Abreu, M. Izquierdo, M. Keddam, X. R. Novoa and H. Takenouti, “Elechtrochemical Behaviour of Zinc- Rich Epoxy Paints in 3% NaCl Solution,” Electrochimica Acta, Vol. 41, No. 15, 1996, pp. 2405-2415. doi:10.1016/0013-4686(96)00021-7
[32] S. Feliu Jr., R. Barajas, J. M. Bastidas, M. Morcillo and S. Feliu, “Study of Protection Mechanisms of Zinc-Rich Paints by Elec-trochemical Impedance Spectroscopy,” In: Electrochemical Impedance: Analysis and Interpretation, 1993, pp. 438-449.
[33] V. B. Miskovic-Stankovic, J. B. Zotovic, Z. Kacarevic-Popovic and M. D. Maksimovic, “Corrosion Behaviour of Epoxy Coatings Electrodeposited on Steel Electrochemically Modified by Zn-Ni Alloy,” Electrochimica Acta, Vol. 44, No. 24, 1999, pp. 4269-4277. doi:10.1016/S0013-4686(99)00142-5
[34] Q. L. Thu, H. Takenouti and S. Touzain, “EIS Characterization of Thick Flawed Organic Coatings Aged Under Cathodic Protection in Sea Water,” Electrochimica Acta, Vol. 51, No. 12, 2006, pp. 2491-2502. doi:10.1016/j.electacta.2005.07.049
[35] M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo and I. Ivanov, “Vibrational Properties and Structure of Undoped and Al-Doped ZnO Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, Vol. 379, No. 1-2, 2000, pp. 28-36. doi:10.1016/S0040-6090(00)01413-9
[36] C. Cachet, et al., “EIS Investigation of Zinc Dissolution in Aerated Sulphate Medium. Part II: Zinc Coatings,” Electrochimica Acta, Vol. 47, No. 21, 2002, pp. 3409- 3422. doi:10.1016/S0013-4686(02)00277-3
[37] V. Ligier, M. Wéry, J. Y. Hihn, J. Faucheu and M. Tachez, “Formation of Main Atmospheric Zinc and Pro- ducts: NaZn4Cl(OH)6SO4?6H2O, Zn4SO4(OH)6?nH2O and Zn4Cl2(OH)4SO4?5H2O in [Cl-] [SO42–] [HCO3–] [H2O2] Electrolytes,” Corrosion Science, Vol. 41, No. 6, 1999, pp. 1139-1164. doi:10.1016/S0010-938X(98)00176-0
[38] A. Kalendová, “Alkalising and Neutralising Effects of Anticorrosive Pigments Containing Zn Mg, Ca and Sr Cations,” Progress in Organic Coating, Vol. 38, No. 3-4, 2000, pp. 199-206. doi:10.1016/S0300-9440(00)00103-X
[39] P. Kalenda, “Effects of Particle Sizes and Shapes of Zinc Metal on the Properties of Anticorrosive Coatings,” Progress in Organic Coatings, Vol. 46, No. 4, 1993, pp. 324- 332.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.