Share This Article:

Nikodým-Type Theorems for Lattice Group-Valued Measures with Respect to Filter Convergence

Abstract Full-Text HTML Download Download as PDF (Size:358KB) PP. 213-221
DOI: 10.4236/apm.2014.45028    3,224 Downloads   4,126 Views   Citations

ABSTRACT

We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open problems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Boccuto, A. and Dimitriou, X. (2014) Nikodým-Type Theorems for Lattice Group-Valued Measures with Respect to Filter Convergence. Advances in Pure Mathematics, 4, 213-221. doi: 10.4236/apm.2014.45028.

References

[1] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2012) Basic Matrix Theorems for -Convergence in -Groups. Mathematica Slovaca, 62, 885-908.
http://dx.doi.org/10.2478/s12175-012-0053-6
[2] Boccuto, A. and Dimitriou, X. (2014) Convergence Theorems for Lattice Group-Valued Measures. Bentham Science Publishing, U.A.E.
[3] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2010) Convergence Theorems for the Optimal Integral in Riesz spaces. Acta Mathematica (Nitra), 13, 55-61.
[4] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2010/2011) Countably Additive Restrictions and Limit Theorems in -Groups. Atti del Seminario Matematico e Fisico dell’ Universita di Modena e Reggio Emilia, 57, 121-134. (Addendum to: “Countably Additive Restrictions and Limit Theorems in -Groups”. Ibidem, 58, 3-10.)
[5] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2012) Limit Theorems in -Groups with Respect to -Convergence. Real Analysis Exchange, 37, 249-278.
[6] Boccuto, A., Riecan, B. and Sambucini A.R. (2009) On the Product of M-Measures in -Groups. Australian Journal of Mathematical Analysis and Applications, 6, 1-8.
[7] Boccuto, A. and Sambucini, A.R. (1998) Abstract Integration in Convergence Groups. Atti del Seminario Matematico e Fisico dell’Universita di Modena, 46, 315-333.
[8] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2010) Unconditional Convergence in Lattice Groups with Respect to Ideals. Commentationes Mathematicae, 50, 161-174.
[9] Aizpuru, A. and Nicasio-Llach, M. (2008) About the Statistical Uniform Convergence. Bulletin of the Brazilian Mathematical Society, 39, 173-182.
http://dx.doi.org/10.1007/s00574-008-0078-1
[10] Aizpuru, A., Nicasio-Llach, M. and Rambla-Barreno, F. (2010) A Remark about the Orlicz-Pettis Theorem and the Statistical Convergence. Acta Mathematica Sinica, English Series, 26, 305-310.
http://dx.doi.org/10.1007/s10114-010-7472-5
[11] Boccuto, A., Candeloro, D. and Sambucini, A.R. (2014) Vitali-Type Theorems for Filter Convergence Related to Vector Lattice-Valued Modulars and Applications to Stochastic Processes. Journal of Mathematical Analysis and Applications, arXiv:1401.7835.
[12] Boccuto, A. and Dimitriou, X. (2011) Some Properties of ideal α-Convergence in -Groups. International Journal of Pure and Applied Mathematics, 72, 93-99.
[13] Boccuto, A. and Dimitriou, X. (2013) Modes of Ideal Continuity of -Group-Valued Measures. International Mathematical Forum, 8, 841-849.
[14] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2011) Some Versions of Limit and Dieudonné-Type Theorems with Respect to Filter Convergence for -Group-Valued Measures. Central European Journal of Mathematics, 9, 1298-1311.
http://dx.doi.org/10.2478/s11533-011-0083-2
[15] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2012) Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces. Proceedings of International Conference on Topology and its Applications ICTA 2011, Cambridge International Science Publishing, 45-58.
[16] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2012) Schur Lemma and Limit Theorems in Lattice Groups with Respect to Filters. Mathematica Slovaca, 62, 1145-1166.
http://dx.doi.org/10.2478/s12175-012-0070-5
[17] Candeloro, D. and Sambucini, A.R. (2014) Filter Convergence and Decompositions for Vector Lattice-Valued Measures. Mediterranean Journal of Mathematics, arXiv:1401.7818.
[18] Aviles Lopez, A., Cascales Salinas, B., Kadets, V. and Leonov, A. (2007) The Schur l1 Theorem for Filters. Journal of Mathematical Physics, Analysis, Geometry, 3, 383-398.
[19] Boccuto, A., Dimitriou, X. and Papanastassiou, N. (2011) Brooks-Jewett-Type Theorems for the Pointwise Ideal Convergence of Measures with Values in -Groups. Tatra Mountains Mathematical Publications, 49, 17-26.
http://dx.doi.org/10.2478/v10127-011-0021-5
[20] Boccuto, A. and Dimitriou, X. (2013) Limit Theorems for Topological Group-Valued Measures. Acta Mathematica (Nitra), 16, 37-43.
[21] Boccuto, A. and Dimitriou, X. (2014) Some New Types of Filter Limit Theorems for Topological Group-Valued Measures. Real Analysis Exchange, 39, 139-174.
[22] Boccuto, A., Das, P., Dimitriou, X. and Papanastassiou, N. (2012) Ideal Exhaustiveness, Weak Convergence and Weak Compactness in Banach Spaces. Real Analysis Exchange, 37, 389-410.
[23] Boccuto, A. and Dimitriou, X. (2011) Ideal Exhaustiveness and Limit Theorems for -Groups. Acta Matematica (Nitra), 14, 65-70.
[24] Boccuto, A. and Dimitriou, X. (2011) Some New Results on Limit Theorems with Respect to Ideal Convergence in -Groups. Atti del Seminario Matematico e Fisico dell’ Universita di Modena e Reggio Emilia, 58, 163-174.
[25] Boccuto, A. and Dimitriou, X. (2013) Ideal Limit Theorems and Their Equivalence in -Group Setting. Jounal of Matematics Research, 5, 43-60.
[26] Drewnowski, L. (1972) Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems. Bulletin de l’ Académie Polonaise des Sciences, Série des sciences mathematiques, astronomiques et physiques, 20, 725-731.
[27] Candeloro, D. (1985) Uniforme esaustivita e assoluta continuita. Bollettino dell’ Unione Matematica Italiana, 4-B, 709-724.
[28] Candeloro, D. (1985) Sui teoremi di Vitali-Hahn-Saks, Dieudonné e Nikodym. Rendiconti del Circolo Matematico di Palermo Serie II, (Supplemento al), 8, 439-445.
[29] Candeloro, D. (1985) Alcuni teoremi di uniforme limitatezza. Rendiconti dell’Accademia Nazionale detta dei XL, 9, 249-260.
[30] Candeloro, D. and Letta, G. (1985) Sui teoremi di Vitali-Hahn-Saks e di Dieudonné. Rendiconti dell’Accademia Nazionale detta dei XL, 9, 203-213.
[31] Boccuto, A. (2003) Egorov Property and Weak σ-Distributivity in Riesz Spaces. Acta Mathematica (Nitra), 6, 61-66.
[32] Boccuto, A., Minotti, A.M. and Sambucini, A.R. (2013) Set-Valued Kurzweil-Henstock Integral in Riesz Space Setting. PanAmerican Mathematical Journal, 23, 57-74.
[33] Fremlin, D.H. (1975) A Direct Proof of the Matthes-Wright Integral Extension Theorem. Journal of the London Mathematical Society, s2-s11, 276-284.
http://dx.doi.org/10.1112/jlms/s2-11.3.276
[34] Boccuto, A. and Candeloro, D. (2004) Uniform Boundedness Theorems in Riesz Spaces. Atti del Seminario Matematico e Fisico dell’ Universita di Modena e Reggio Emilia, 52, 369-382.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.