Share This Article:

Structural Analysis and Static Simulation of Coastal Planktonic Networks

Abstract Full-Text HTML Download Download as PDF (Size:2121KB) PP. 113-124
DOI: 10.4236/jilsa.2014.62009    4,195 Downloads   5,547 Views   Citations

ABSTRACT

The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making process of the Brazilian Information System of Coastal Management, this paper presents a preliminary analysis of the effects of simulated deletions of individual organisms within a planktonic network as knowledge acquisition platform. An in situ scanning flow cytometer was used to data acquisition. A static and undirected food web is generated and represented by a fuzzy graph structure. Our results show through a series of indices the main changes of these networks. It was also verified similar traits and properties with other food webs found in the literature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Pereira, G. , Andrade, L. , Espíndola, R. and Ebecken, N. (2014) Structural Analysis and Static Simulation of Coastal Planktonic Networks. Journal of Intelligent Learning Systems and Applications, 6, 113-124. doi: 10.4236/jilsa.2014.62009.

References

[1] Polis, A.G. and Hurd, S.D. (1996) Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary Productivity on Small Islands and Coastal Land Communities. The American Naturalist, 147, 396-423.
http://dx.doi.org/10.1086/285858
[2] The Brazilian Ministry of the Environment (2013) Zona Costeira e Marinha.
http://www.mma.gov.br/biodiversidade/biodiversidade-aquatica/zona-costeira-e-marinha
[3] Souto, R.D. (2013) Atlas de Indicadores de Sustentabilidade para os Municípios Costeiros do Estado do Rio de Janeiro.
http://www.ivides.org/atlas
[4] Cohen, J.E., Briand, F. and Newman, C.M. (1990) Community Food Webs: Data and Theory. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-83784-5
[5] Caldarelli, G., Garlaschelli, D. and Pietronero, L. (2003) Food Web Structure and the Evolution of Complex Networks. In: Pastor-Satorras, R., Rubi, M. and Diaz-Guilera, A., Eds., Statistical Mechanics of Complex Networks, SpringerVerlag Berlin Heidelberg, New York, 148-166.
http://dx.doi.org/10.1007/978-3-540-44943-0_9
[6] Dunne, J.A., Williams, R.J., Martinez, N.D., Wood, R.A. and Erwin, D.H. (2008) Compilation and Network Analyses of Cambrian Food Webs. PLoS Biology, 6, e102.
http://dx.doi.org/10.1371/journal.pbio.0060102
[7] Dunne, J.A. and Williams, R.J. (2009) Cascading Extinctions and Community Collapse in Model Food Webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1711-1723.
http://dx.doi.org/10.1098/rstb.2008.0219
[8] O’Gorman, E.J., Jacob, U., Jonsson, T. and Emmerson, M.C. (2010) Interaction Strength, Food Web Topology and the Relative Importance of Species in Food Webs. Journal of Animal Ecology, 79, 682-692.
http://dx.doi.org/10.1111/j.1365-2656.2009.01658.x
[9] Ramsey, D.S.L. and Norbury, G.L. (2009) Predicting the Unexpected: Using a Qualitative Model of a New Zealand Dryland Ecosystem to Anticipate Pest Management Outcomes. Austral Ecology, 34, 409-421.
http://dx.doi.org/10.1111/j.1442-9993.2009.01942.x
[10] Ramsey, D.S.L. and Veltman, C. (2005) Predicting the Effects of Perturbations on Ecological Communities: What Can Qualitative Models Offer? Journal of Animal Ecology, 74, 905-916.
http://dx.doi.org/10.1111/j.1365-2656.2005.00986.x
[11] Creed, J.C., Oliveira, A.E.S., Pires, D.O., Figueiredo, M.A.O., Ferreira, C.E.L., Ventura, C.R.R., et al. (2007) RAP Ilha Grande-um levantamento da biodiversidade: Histórico e conhecimento da biota. In: Creed, J.C., Pires, D.O. and Figueiredo, M.A.O., Eds., Biodiversidade Marinha da Baía da Ilha Grande, MMA/SBF, Brasília, 43-63.
[12] Lacerda, L.D., Koudstaal, R., Blower, B.T. and Pfeiffer, W.C. (1988) IFIAS Research Program on Coastal Resources Management: Sepetiba Bay Management Study: Workplan. International Federation of Institutes of Advanced Studies, Rio de Janeiro.
[13] Lacerda, L.D., Pfeiffer, W.C. and Fiszman, M. (1987) Heavy Metal Distribution, Availability and Fate in Sepetiba Bay, SE Brazil. Science of the Total Environment, 65, 163-173.
http://dx.doi.org/10.1016/0048-9697(87)90169-0
[14] Molisani, M.M., Marins, R.V., Machado, W., Paraquetti, H.H.M., Bidone, E.D. and Lacerda, L.D. (2004) Environmental Changes in Sepetiba Bay, SE Brazil. Regional Environmental Change, 4, 17-27.
http://dx.doi.org/10.1007/s10113-003-0060-9
[15] Pereira, G.C., Oliveira, M.M.F. and Ebecken, N.F.F (2013) Genetic Optimization of Artificial Neural Networks to Forecast Virioplankton Abundance from Cytometric Data. Journal of Intelligent Learning Systems and Applications, 5, 57-66.
http://dx.doi.org/10.4236/jilsa.2013.51007
[16] Dubelaar, G.B.J., Venekamp, R.R. and Gerritzen, P.L. (2003) Handsfree Counting and Classification of Living Cells and Colonies. 6th Congress on Marine Sciences, MarCuba 2003, Havana, 1-5 December 2003.
[17] Lee, K.H. (2005) First Course on Fuzzy Theory and Applications, v. 27. Springer-Verlag, Berlin, Heidelberg, New York.
[18] Mordeson, J.N. and Nair, P.S. (2000) Fuzzy Graphs and Fuzzy Hypergraphs, v. 46. Physica-Verlag, Heidelberg, New York.
http://dx.doi.org/10.1007/978-3-7908-1854-3
[19] Diestel, R. (2010) Graph Theory, v. 173. 4th Electronic Edition, Springer-Verlag, Heidelberg, New York.
[20] Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511815478
[21] Zelen, M. and Severo, N.C. (1964) Probability Functions. In: Abramowitz, M. and Stegun, I.A., Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Government Printing Office, Washington DC.
[22] Watts, D.J. and Strogatz, S. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
http://dx.doi.org/10.1038/30918
[23] Newman, M.E.J. (2010) Networks: An Introduction. Oxford University Press, New York, 772.
http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
[24] Wirtz, K.W. (2012) Who Is Eating Whom? Morphology and Feeding Types Determine the Size Relation between Planktonic Predators and Their Ideal Prey. Marine Ecology Progress Series, 445, 1-12.
http://dx.doi.org/10.3354/meps09502
[25] Green, R.E., Sosik, H.M., Olson, R.J. and DuRand, M.D. (2003) Flow Cytometric Determination of Size and Complex Refractive Index for Marine Particles: Comparison with Independent and Bulk Estimates. Applied Optics, 42, 526-541.
http://dx.doi.org/10.1364/AO.42.000526
[26] Chávez, F.P. (1989) Size Distribution of Phytoplankton in the Central and Eastern Tropical Pacific. Global Biogeochemical Cycles, 3, 27-35.
http://dx.doi.org/10.1029/GB003i001p00027
[27] Calbet, A. (2008) The Trophic Roles of Microzooplankton in Marine Systems. ICES Journal of Marine Science, 65, 325-331.
http://dx.doi.org/10.1093/icesjms/fsn013
[28] Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Seon, N.J. and Kim, H.T. (2010) Growth, Feeding and Ecological Roles of the Mixotrophic and Heterotrophic Dinoflagellates in Marine Planktonic Food Webs. Ocean Science Journal, 45, 65-91.
http://dx.doi.org/10.1007/s12601-010-0007-2
[29] Murtaugh, P.A. and Derryberry, D.R. (1998) Models of Connectance in Food Webs. Biometrics, 54, 754-761.
http://dx.doi.org/10.2307/3109781
[30] Dunne, J.A., Williams, R.J. and Martinez, N.D. (2002) Food-Web Structure and Network Theory: The Role of Connectance and Size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917-12922.
http://dx.doi.org/10.1073/pnas.192407699
[31] Dunne, J.A., Williams, R.J. and Martinez, N.D. (2002) Small Networks but Not Small Worlds: Unique Aspects of Food Web Structure. SFI Working Paper.
http://www.santafe.edu/research/working-papers/abstract/f1c55aa76f1ad351a52497c9650ee636
[32] Montoya, J.M. and Solé, R.V. (2002) Small World Patterns in Food Webs. Journal of Theoretical Biology, 214, 405412.
http://dx.doi.org/10.1006/jtbi.2001.2460
[33] Olesen, J.M., Bascompte, J., Jordano, P. and Dupont, Y.L. (2006) The Smallest of All Worlds: Pollination Networks. Journal of Theoretical Biology, 240, 270-276.
http://dx.doi.org/10.1016/j.jtbi.2005.09.014
[34] Humphries, M.D. and Gurney, K. (2008) Network “Small-World-Ness”: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3, e0002051.
http://dx.doi.org/10.1371/journal.pone.0002051
[35] Steele, J.A., Countway, P.D., Xia, L., Vigil, P.D., Beman, J.M., Kim, D.Y., et al. (2011) Marine Bacterial, Archaeal and Protistan Association Networks Reveal Ecological Linkages. ISME Journal, 5, 1414-1425.
http://dx.doi.org/10.1038/ismej.2011.24
[36] Barabási, A.L. and Bonabeau, E. (2003) Scale-Free Networks. Scientific American, 288, 60-69.
http://dx.doi.org/10.1038/scientificamerican0503-60
[37] Montoya, J.M., Pimm, S.L. and Solé, R.V. (2006) Ecological Networks and Their Fragility. Nature, 442, 259-264.
http://dx.doi.org/10.1038/nature04927

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.