Share This Article:

Positive Periodic Solution for a Two-Species Predator-Prey System

Abstract Full-Text HTML XML Download Download as PDF (Size:369KB) PP. 1099-1107
DOI: 10.4236/am.2014.58103    4,803 Downloads   10,402 Views  

ABSTRACT

A two-species predator-prey system with time delay in a two-patch environment is investigated. By using a continuation theorem based on coincidence degree theory, we obtain some sufficient conditions for the existence of periodic solution for the system.


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Cao, M. , Li, X. and Dai, X. (2014) Positive Periodic Solution for a Two-Species Predator-Prey System. Applied Mathematics, 5, 1099-1107. doi: 10.4236/am.2014.58103.

References

[1] Freedman, H.I. (1980) Mathematical Models in Population Ecology. Marcel Dekker, New York.
[2] Sugie, J. (1998) Two-Parameter Bifurcation System of Ivlev Type. Journal of Mathematical Analysis and Applications, 217, 349-371.
http://dx.doi.org/10.1006/jmaa.1997.5700
[3] Ardito, A. and Ricciardi, P. (1995) Lyapunov Functions for a Generalized Gause-Type Model. Journal of Mathematical Biology, 33, 816-828.
http://dx.doi.org/10.1007/BF00187283
[4] Hassel, M.P. (1978) The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton.
[5] Hwang, T.W. (1999) Predator-Prey System. Journal of Mathematical Analysis and Applications, 238, 179-195.
http://dx.doi.org/10.1006/jmaa.1999.6520
[6] Hsu, S.B., Hwang, T.W. and Kuang, Y. (2001) Global Analysis of the Michaelis-Menten Type Ratio-Dependent Predator-Prey. Journal of Mathematical Biology, 42, 489-506.
http://dx.doi.org/10.1007/s002850100079
[7] Kot, M. (2001) Elements of Mathematical Biology. Cambridge University Press, Cambridge.
[8] Kuang, Y. and Freedman, H.I. (1988) Uniqueness of Limit Cycles in Gause-Type Predator-Prey Systems. Mathematical Biosciences, 88, 67-84.
http://dx.doi.org/10.1016/0025-5564(88)90049-1
[9] Kooij, R.E. and Zegeling, A. (1996) A Predator-Prey Model with Ivlev’s Functional Response. Journal of Mathematical Analysis and Applications, 198, 473-489.
http://dx.doi.org/10.1006/jmaa.1996.0093
[10] Liu, X.X. and Lou, Y.J. (2010) Global Dynamics of a Predator-Prey Model. Journal of Mathematical Analysis and Applications, 371, 323-340.
http://dx.doi.org/10.1016/j.jmaa.2010.05.037
[11] Xiao, D.M., Li, W.X. and Han, M.A. (2006) Dynamics in Ratio-Dependent Predator-Prey Model with Predator Harvesting. Journal of Mathematical Analysis and Applications, 324, 14-29.
http://dx.doi.org/10.1016/j.jmaa.2005.11.048
[12] Xiao, D. and Zhang, Z.D. (2003) On the Uniqueness and Nonexistence of Limit Cycles for Predator-Prey Systems. Nonlinearity, 16, 1185-1201.
http://dx.doi.org/10.1088/0951-7715/16/3/321
[13] Beddington, J.R. (1975) Mutual Interference between Parasites or Predators and Its Effect on Searching Efficiency. Journal of Animal Ecology, 3, 331-340.
http://dx.doi.org/10.2307/3866
[14] DeAngelis, D.L., Goldstein, R.A. and O’Neil, R.V. (1975) A Model for Trophic Interaction. Ecology, 4, 881-892.
http://dx.doi.org/10.2307/1936298
[15] Cantrell, R.S. and Cosner, C. (2001) On the Dynamics of Predator-Prey Models with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 257, 206-222.
http://dx.doi.org/10.1006/jmaa.2000.7343
[16] Chen, F., Chen, Y. and Shi, J. (2008) Stability of the Boundary Solution of a Nonautonomous Predator-Prey System with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 344, 10571067.
http://dx.doi.org/10.1016/j.jmaa.2008.03.050
[17] Cui, J. and Takeuchi, Y. (2006) Permanence, Extinction and Periodic Solution of Predator-Prey System with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 317, 464-474.
http://dx.doi.org/10.1016/j.jmaa.2005.10.011
[18] Dimitrov, D.T. and Kojouharov, H.V. (2005) Complete Mathematical Analysis of Predator-Prey System with Linear Prey Growth and Beddington-DeAngelis Functional Response. Applied Mathematics and Computation, 162, 523-538.
http://dx.doi.org/10.1016/j.amc.2003.12.106
[19] Fan, M. and Kuang, Y. (2004) Dynamics of a Nonautonomous Predator-Prey System with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 295, 15-39.
http://dx.doi.org/10.1016/j.jmaa.2004.02.038
[20] Hwang, T.W. (2003) Global Analysis of the Predator-Prey System with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 281, 395-401.
http://dx.doi.org/10.1016/S0022-247X(02)00395-5
[21] Liu, S. and Beretta, E. (2006) A Stage-Structured Predator-Prey Model of Beddington-DeAngelis Type. SIAM Journal on Applied Mathematics, 66, 1101-1129.
http://dx.doi.org/10.1137/050630003
[22] Li, H.Y. and Takeuchi, Y. (2011) Dynamics of the Density Dependent Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 374, 644-654.
http://dx.doi.org/10.1016/j.jmaa.2010.08.029
[23] Gaines, R.E. and Mawhin, J.L. (1977) Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.